THE ASIAN SCHOOL

 WINTER VACATION WORKSHEET

 WINTER VACATION WORKSHEET
 MATHEMATICS- VIII

Q (1): A cuboid has a volume of $275 \mathrm{~cm}^{3}$ and base area of $25 \mathrm{~cm}^{2}$. What is its height?
(a) 12 cm
(b) 11 cm
(c) 10 cm
(d) 8 cm

Q (2): A godown is in the for $0.8 \mathrm{~m}^{3}$ of a cuboid of measure $60 \mathrm{~m} \times 40 \mathrm{~m} \times 30 \mathrm{~m}$. How many cuboidal boxes can be stored in it if the volume of one box is ?
(a) 60,000
(b) 80,000
(c) 90,000
(d) $1,00,000$

Q (3): A rectangular piece of paper $11 \mathrm{~cm} \times 4 \mathrm{~cm}$ is folded without overlapping to make a cylinder of height 4 cm . What is the volume of this cylinder?
(a) $48.5 \mathrm{~cm}^{3}$
(b) $38.5 \mathrm{~cm}^{3}$
(c) $28.5 \mathrm{~cm}^{3}$
(d) $58.5 \mathrm{~cm}^{\mathbf{3}}$

Q (4): A cuboid is of dimensions $60 \mathrm{~cm} \times 54 \mathrm{~cm} \times 30 \mathrm{~cm}$. How many small cubes with side 6 cm can be placed in the given cuboid?
(a) 225
(b) 425
(c) 450
(d) 250
Q (5): What is the height of a cylinder whose volume is $1.54 \mathrm{~m}^{3}$ and the diameter of the base is 140 cm ?
(a) 1 m
(b) 10 m
(c) 5 m
(d) 3 m

Q (6): How many small cubes with an edge of 20 cm each can be just accommodated in a cubical box of 2 m edge?
(a) 10
(b) 100
(c) 1000
(d) 10000
Q (7): What is the capacity of a water tank, in litres, whose dimensions are $4.2 \mathrm{~m}, 3 \mathrm{~m}$ and 1.8 m ?
(a) 22660 L
(b) 22680 L
(c) 26660 L
(d) 222680 L

Q (8): The dimensions of a rectangular water tank are 2 m 75 cm by 1 m 80 cm by 1 m 40 cm . How many litres of water does it hold when filled to the brim?
(a) 3960 L
(b) 6390 L
(c) 6930 L
(d) 3096 L

Q (9): A cardboard box is 1.2 m long, 72 cm wide and 54 cm high. How many bars of soap can be put into it if each bar measures $6 \mathrm{~cm} \times 4.5 \mathrm{~cm} \times 4 \mathrm{~cm}$?
(a) 234 bars
(b) 5648 bars
(c) 3650 bars
(d) 4320 bars

Q (10): The size of a matchbox is $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What is the volume of a packet containing 144 matchboxes? How many such packets can be placed in a carton of size $1.5 \mathrm{~m} \times 84 \mathrm{~cm} \times 60 \mathrm{~cm}$?
(a) 756000 cubic cm, 150 packets
(b) 756000 cubic cm ,
(c) 756000 cubic cm , 240 packets
(d) 756000 cubic cm , 100 packets

Q (11): The rainfall recorded on a certain day was 5 cm . Find the volume of water that fell on a 2-hectare field.
(a) 500 cubic m
(b) 1000 cubic m
(c) 100 cubic m
(d) 2000 cubic m

Q (12): A pit 5 m long and 3.5 m wide is dug to a certain depth. If the volume of earth taken out of it is 14 cubic m , what is the depth of the pit?
(a) 18 cm
(b) 40 cm
(c) 80 cm
(d) 60 cm

Q (13): A rectangular water tank is 90 cm wide and 40 cm deep. If it can contain 576 litres of water, what is its length?
(a) 1.060 m
(b) 1.600 m
(c) 16.00 m
(d) 1.800 m

Q (14): An aquarium is in the form of a cuboid whose external measures are $80 \mathrm{~cm} \times 30 \mathrm{~cm} \times 40 \mathrm{~cm}$. The base, side faces and back face are to be covered with a coloured paper. The area of the paper needed is ?
(a) $8600 \mathrm{~cm}^{2}$
(b) $8000 \mathrm{~cm}^{2}$
(c) $9000 \mathrm{~cm}^{2}$
(d) $9600 \mathrm{~cm}^{2}$

Q (15): The internal measures of a cuboidal room are $12 \mathrm{~m} \times 8 \mathrm{~m} \times 4 \mathrm{~m}$. Find the total cost of whitewashing all four walls of a room, if the cost of white washing is Rs 5 per m^{2}.
(a) 480 rupees
(b) 500 rupees
(c) 580 rupees
(d) 800 rupees

Q (16): In a building there are 24 cylindrical pillars. The radius of each pillar is 28 cm and height is 4 m . Find the total cost of painting the curved surface area of all pillars at the rate of 8 Rs per \mathbf{m}^{2}.
(a) 1362.68 rupees
(b) 1381.68 rupees
(c) 1351.68 rupees
(d) 1324.68 rupees
Q (17): Find the height of a cylinder whose radius is 7 cm and the total surface area is $968 \mathrm{~cm}^{2}$..
(a) 20 cm
(b) 15 cm
(c) 25 cm
(d) 10 cm

Q (18): If the radius of a cylinder is tripled but its curved surface area is unchanged, then its height will be ?
(a) tripled
(b) constant
(c) one sixth
(d) one third

Q (19): Three cubes of metal whose edges are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively are melted to form a single cube. The edge of the new cube is?
(a) 12 cm
(b) 24 cm
(c) 18 cm
(d) 20 cm

Q (20): Two cubes have volumes in the ratio 1:64. The ratio of the area of a face of first cube to that of the other is?
(a) $1: 4$
(b) $1: 8$
(c) $1: 16$
(d) 1:32

Q (21): The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are $4.5 \mathrm{~m}, 3$ m , and 350 cm respectively. What is the cost of plastering at the rate of Rs 8 per m^{2} ?
(a)Rs 1062
(b) Rs 528
(c) Rs 640
(d) Rs 550

Q (22):

In the above figure, What is the volume of the figure?
(a) $x^{3} / 2$
(b) $x^{3} / 3$
(c) $x^{3} / 4$
(d) x^{3}

Q (23): Three cubes each of side 10 cm are joined end to end. What is the surface area of the resultant figure?
(a) $1600 \mathrm{~cm}^{2}$
(b) $1400 \mathrm{~cm}^{2}$
(c) $1200 \mathrm{~cm}^{2}$
(d) $1000 \mathrm{~cm}^{2}$
Q (24): The area of a trapezium shaped field is $480 \mathrm{~m}^{2}$, the distance between two parallel sides is 15 m and one of the parallel sides is 20 m . The other parallel side is ?
(a) 40 m
(b) 44 m
(c) 20 m
(d) 22 m

Q (25):

In the above image, find the area enclosed in cm^{2} by the given figure ABCDEF as per the dimensions given.
(a) 540
(b) 504
(c) 450
(d) 405
Q (26):

In the above image, find the area of the given figure $A B C D E F G H$ in cm^{2} as per dimensions given in it.
(a) 86
(b) 52
(c) 25
(d) 68

Q (27):

In the above image, find the area of regular hexagon ABCDEF in cm^{2} whose each side is 13 cm and height is 23 cm .
(a) 423
(b) 324
(c) 432
(d) 342

Q (28):

In the given figure $A B C D E$ is a pentagonal park in which $D E=D C, A B=B C=C E=E A=25 \mathrm{~m}$ and its total height is 41 m . Find the area of the park.
(a) $825 \mathrm{~m}^{2}$
(b) $826 \mathrm{~m}^{2}$
(c) $827 \mathrm{~m}^{\mathbf{2}}$
(d) $828 \mathrm{~m}^{2}$
Q (29):

From the given figure, Find the area of the shaded region, if $A B C D$ is a square of side 14 cm and APD and BPC are semi-circles.
(a) $42 \mathrm{~cm}^{2}$
(b) $20 \mathrm{~cm}^{2}$
(c) $100 \mathrm{~cm}^{2}$
(d) $125 \mathrm{~cm}^{2}$

Q (30):

In the above figure, a plot is in the form of a rectangle $A B C D$ having a semi-circle on $B C$. If $A B=60 \mathrm{~m}$ and $B C=28 \mathrm{~m}$, find the area of the plot.
(a) 1998 sq cm
(b) 1111 sq cm
(c) 1388 sq cm
(d) 1988 sq m
Q (31):

Find the area enclosed by the above figure as the sum of the areas of a rectangle and a trapezium.
(a) 334 sq cm
(b) 424 sq cm
(c) 384 sq cm
(d) NONE OF THESE

Q (32):

From the above figure, find the area of the shaded portion.
(a) $432 \mathrm{~m}^{2}$
(b) $43 \mathbf{m}^{2}$
(c) $532 \mathrm{~m}^{2}$
(d) $632 \mathrm{~m}^{2}$
Q (33):

From the above image, Find the area of the shaded region.
(a) $240 \mathrm{~m}^{2}$
(b) $241 \mathrm{~m}^{2}$
(c) $242 \mathrm{~m}^{2}$
(d) $\mathbf{2 4 3} \mathbf{m}^{2}$
Q (34): Express in standard form 4050000.
(a) 4.05×10^{6}
(b) $\mathbf{4 0 . 5} \times \mathbf{1 0}^{6}$
(c) 4.05×10^{2}
(d) 4.05×10^{4}

Q (35): Express in usual form 3.52×10^{5}
(a) 3520
(b) 3.52
(c) 352000
(d) 352

Q (36): Express in usual form 7.54×10^{-4}
(a) 0.00754
(b) 0.000754
(c) 754
(d) 0.754

Q (37): Express in standard form 0.0000000000085
(a) 8.5×10^{-12}
(b) 8.5×10^{-10}
(c) 8.5×10^{-15}
(d) 7.5×10^{-12}
Q (38): Find x so that $(-5)^{x+1} \times(-5)^{5}=(-5)^{7}$.
(a) 0
(b) 1
(c) 2
(d) -1
$\mathrm{Q}(39)$: The value of $\left(7^{-1}-8^{-1}\right)^{-1}-\left(3^{-1}-4^{-1}\right)^{-1}$ is
(a) 68
(b) 56
(c) 44
(d) 12

Q (40): $\left[4^{-1}+3^{-1}+6^{-2}\right]^{-1}=$
(a) $\left(\frac{19}{11}\right)$
(b) $\left(\frac{18}{11}\right)$
(c) $\left(\frac{20}{11}\right)$
(d) $\left(\frac{21}{11}\right)$
Q (41): Find the value of n in $\frac{2^{n 1} \times 2^{\frac{1}{3}}}{2^{-3}}=2^{18}$
(a) 8
(b) 9
(c) 7
(d) 6
Q (42): Simplify: $\frac{125 x^{-8}}{4^{-3} x^{25} z^{-3}}$.
(a) $\mathbf{6 2 5} \mathrm{x}^{6}$
(b) $\mathbf{6 2 5} \mathrm{x}^{2}$
(c) $625 x^{3}$
(d) $\mathbf{6 2 5} \mathrm{x}^{5}$

Q (43): lf $\frac{5^{m} \times 5^{3} \times 5^{-2}}{5^{-5}}=5^{12}$, find m.
(a) 6
(b) 5
(c) 4
(d) 3
$\mathrm{Q}(44):$ Find $\mathrm{x} .{ }^{-\frac{1}{7}}{ }^{-5} \div\left(-\frac{1}{7}\right)^{-7}=(-7)^{x}$
(a) $1 / 2$
(b) $3 / 2$
(c) 2
(d) -2

Q (45): Find $x . \frac{2}{5}^{2 x+6} \times\left(\frac{2}{5}\right)^{3}=\frac{2}{5}^{x+2}$
(a) 5
(b) -6
(c) -7
(d) 7
Q (46): If $a=-1, b=2$, then find the value of $a^{b}+b^{a}$
(a) $1 / 2$
(b) $3 / 2$
(c) 2
(d) -2

Q (47): What is the expression of $\frac{-1296}{14641}$ exponential form?
(a) $\left(\frac{-6}{11}\right)^{3}$
(b) ${ }^{\left(\frac{-6}{11}\right)^{4}}$
(c $)^{\left(\frac{-6}{11}\right)^{-3}}$
(d) $\left(\frac{-6}{11}\right)^{-4}$

Q (48): What is the expression of $\frac{-125}{343}$ exponential form?
(a) $\left(\frac{5}{7}\right)^{2}$
(b) $\left(\frac{5}{7}\right)^{3}$
(c) $\left(\frac{5}{7}\right)^{-3}$
(d) $\left(\frac{-5}{7}\right)^{3}$

Q (49): Simplify: $\frac{(9)^{3} \times 27 \times t^{4}}{(3)^{-2} \times(3)^{4} \times t^{2}}$
(a) $3^{7} \times t^{3}$
(b) $3^{7} \times t^{2}$
(c) $3^{-7} \times t^{2}$
(d) $(-3)^{7} \times t^{2}$

Q (50): Simplify: $\frac{\left(3^{-2}\right)^{2} \times\left(5^{2}\right)^{-3} \times\left(t^{-3}\right)^{2}}{\left(3^{-2}\right)^{5} \times\left(5^{3}\right)^{-2} \times\left(t^{-4}\right)^{3}}$
(a) $(3 t)^{6}$
(b) $(4 t)^{7}$
(c) $(5 t)^{6}$
(d) $(7 t)^{9}$

