Test Paper Session 2017-18
CLASS 10
SUBJECT Mathematics
CHAPTER-1

Ans1	1000	1
Ans2	xy^{2}	1
Ans3	13	1
Ans4	24	1
Ans5	12	2
Ans6	$\begin{aligned} & 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+7 \\ & =7(6 \times 5 \times 4 \times 3 \times 2 \times 1+1) \\ & =7 \times 721 \times 1 \end{aligned}$ Because it has more than 2 factors so, it is a composite number.	2
Ans7	Similar to Question 6	2
Ans8	$\begin{aligned} & \mathrm{a}=2^{5} \times 3^{7} \times 5^{2} \times 7 \\ & \mathrm{~b}=2^{3} \times 3^{2} \times 5^{6} \times 11 \\ & \mathrm{HCF}=2^{3} \times 3^{2} \times 5^{2} \\ & \mathrm{LCM}=2^{5} \times 3^{7} \times 5^{6} \times 7 \times 11 \end{aligned}$	2
Ans9	Similar to Question 6	2
Ans10	LCM of 9,12,15 in 180 min . The bells will tolltogether again after 3 hrs .	2
Ans11	$\frac{91}{1250} \times \frac{91}{5^{4} 2^{1}}=0.0728$	2
Ans12	Let $\frac{1}{2+\sqrt{3}}$ is rational $\frac{1}{2+\sqrt{3}}=\frac{a}{b}$ HCF of a and b in 1 $\sqrt{3}=\frac{b-2 a}{a}$ $\frac{b-2 a}{a}$ is a rational no. as a, b are integers $=\sqrt{3}$ in rational But $\sqrt{3}$ is irrational \therefore It is a contradiction \therefore ourassumption is wrong that $\frac{1}{2+\sqrt{3}}$ is rational. it is irrational no.	2
Ans13	Similar to Question 12	3
Ans14	Let a is any +ve odd integer, Let $\mathrm{b}=4$ By E.D.L $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b}$ Let $\mathrm{b}=4$ $\begin{aligned} & \mathrm{a}=4 \mathrm{a}+\mathrm{r}, 0 \leq \mathrm{r}<4 \\ & \mathrm{a}=4 \mathrm{a}+0 \quad=4 \mathrm{a} \text { even } \\ & \mathrm{a}=4 \mathrm{a}+2 \quad \text { odd } \\ & \mathrm{a}=4 \mathrm{a}+2 \quad \text { even } \\ & \mathrm{a}=4 \mathrm{a}+3 \quad \text { odd } \\ & \therefore \mathrm{a}=(4 \mathrm{a}+1),(4 \mathrm{a}+3) \text { H.P } \end{aligned}$	3
Ans15	(1) 608,544 By E.D.L. $608=544 \times 1+64$ Now, 544, 64 By E.D.L. $544=64 \times 8+32$ Now, 64, 32 $\therefore 64=32 \times 2+0$ $\therefore \mathrm{HCF}=32$ (ii) Same as part (i) (iii) Same as part (ii)	3
Ans16	$\begin{aligned} & \mathrm{HCF}=9 \quad \mathrm{LCM}=90, \mathrm{a}=18, \mathrm{~b}=? \\ & \mathrm{a} \times \mathrm{b}=\mathrm{HCF} \times \mathrm{LCM} \end{aligned}$	3

	$\begin{aligned} & 18 \times b=9 \times 90 \\ & b=45 \end{aligned}$	
Ans17	$(\sqrt{3}+\sqrt{2}$ is Prove $\sqrt{3}$ is irrational by method of contradiction. Prove $\sqrt{2}$ is irrational by method of contradiction. $\therefore \sqrt{2}+\sqrt{3}$ is irrational. \therefore sum of two irrational , is irrational.	3
Ans18	HCF of 726, 275 By EDL $726=275 \times 2+176$ 275 and 176 By ED L $275=176 \times 1+99$ 176 and 99 \therefore by EDL $176=99 \times 1+77$ $99=77 \times 1+22$ And so on At last $\mathrm{HCF}=11$	3
Ans19	Same as answer 18	3
Ans20	Boys $=20$ Girls $=15$ Girls $=15$ No of graph = n HCF of boys and girls $=5$ No of graphs of boys $=\frac{20}{5}=4=x$ No of groups of girls $=\frac{15}{5}=3=y$ No. of groups $=4+3=7=n$	3

CLASS 10
SUBJECT Mathematics
CHAPTER- 2 Polynomials

Ans1	$\operatorname{Deg} \mathrm{p}(\mathrm{x})<\{\operatorname{deg} \mathrm{g}(\mathrm{x})$	1
Ans2	$\begin{aligned} & \mathrm{S}=-3+4=1, \mathrm{P}=-3 \times 4=-12 \\ & \therefore \text { Required polynomial }=\mathrm{x}^{2}-\mathrm{x}-12 \end{aligned}$	1
Ans3	$\begin{aligned} & \mathrm{S}=-(-5)=5 \\ & \mathrm{~A}+\mathrm{B}=5 \\ & \mathrm{~B}=5-6=-1 \end{aligned}$	1
Ans4	$\begin{aligned} & \text { let } \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+4 \\ & \mathrm{f}(3)=32-5 \times 3+4=-2 \\ & \text { for } \mathrm{f}(\mathrm{~b})=0,2 \text { must be added to } \mathrm{f}(\mathrm{x}) \end{aligned}$	1
Ans5	Let one root be x then other root will be -x $\begin{aligned} & \therefore \mathrm{S}=\mathrm{x}+(-\mathrm{x})=0 \\ & \frac{-b}{a}=\frac{8 k}{4}=0 \\ & \mathrm{~K}=\mathrm{O} \end{aligned}$	2
Ans6	$(K-1)(-3)^{2}+K(-3)+1=0$ Solving we will get $K=\frac{4}{3}$	2
Ans7	$\begin{aligned} & \mathrm{A}+\mathrm{B}=5 \text { and } \mathrm{AB}=6 \\ & \therefore \mathrm{~A}+\mathrm{B}-3 \mathrm{AB}=5-3 \times 6=5-18=-13 \end{aligned}$	2
Ans8	$\begin{aligned} & 4 x^{2}-12 x+9=(2 x-3)^{2}=0 \\ & x=\frac{3}{2}, \frac{3}{2} \end{aligned}$	2
Ans9	$\mathrm{A}+\mathrm{B}=-1, \mathrm{AB}=-1$, so $\frac{1}{A}+\frac{1}{B}=\frac{A+B}{A B}=\frac{-1}{-1}=1$	2
Ans10	$\begin{aligned} & a(1)^{2}-3(a-1)(1)-1=0 \\ & a-3 a+3-1=0 \\ & a=1 \end{aligned}$	2
Ans11	$\begin{aligned} & \alpha+\beta=-1 / 4 \alpha \beta=1 / 4 \\ & \therefore \text { Req. Polynomial } 1 / 4(4 \times 2+\mathrm{x}+1) \end{aligned}$	2
Ans12	$\begin{aligned} & \alpha+\beta=\sqrt{2} \quad \alpha \beta=1 / 3 \\ & \therefore \text { Req. polynomial } 3 x 2-3 \sqrt{2} \mathrm{x}+1 \end{aligned}$	2
Ans13	On solving $6 \mathrm{x} 2-3-7 \mathrm{x}$ we get factors ($2 \mathrm{x}-3$) $(3 \mathrm{x}+1)$ Thus $\alpha=3 / 2 \beta=-1 / 3$	3
Ans14	On dividing $3 \mathrm{x}^{4}+5 \mathrm{x}^{3}-7 \mathrm{x}^{2}+2 \mathrm{x}+2$ by $\mathrm{x}^{2}+3 \mathrm{x}+1$ we get, $3 \mathrm{x}^{2}-4 \mathrm{x}+2$ as quotient and 0 as remainder. So, $x^{2}+3 x+1$ is a factor of the given polynomial	3
Ans15	From $2 \mathrm{x}^{2}-5 \mathrm{x}+7, \alpha+\beta=5 / 2$ and $\alpha \beta=7 / 2$ For required polynomial : $\begin{aligned} & \mathrm{S}=(2 \alpha+3 \beta)+3 \alpha+2 \beta=5 \alpha+5 \beta=5(\alpha+\beta)=5 \mathrm{x} 5 / 2=25 / 2 \\ & \mathrm{P}=(2 \alpha+3 \beta)(3 \alpha+2 \beta)=6 \alpha 2+6 \beta 2+13 \alpha \beta \\ & =6 \alpha^{2}+6 \beta^{2}+12 \alpha \beta+\alpha \beta \\ & =6\left(\alpha^{2}+\alpha \beta^{2}+2 \alpha \beta\right)+\alpha \beta \\ & =6(\alpha+\beta)^{2}+\alpha \beta \\ & =6(5 / 2)^{2}+7 / 2=41 \\ & \therefore \text { Required polynomial }=\mathrm{K}\left(\mathrm{x}^{2}-\mathrm{S} \mathrm{x}+\mathrm{P}\right) \\ & =\mathrm{K}\left(\mathrm{x}^{2}-\frac{25 x}{2}+41 \text { where } \mathrm{k}\right. \text { is any non zero real number. } \end{aligned}$	3
Ans16	```On dividing \(8 \mathrm{x}^{4}+14 \mathrm{x}^{3}-2 \mathrm{x}^{2}+7 \mathrm{x}-8\) by \(4 \mathrm{x}^{2}+3 \mathrm{x}-2\) we get \(2 \mathrm{x}^{2}+2 \mathrm{x}-1\) as quotient and \(14 \mathrm{x}-10-\mathrm{y}\) as remainder. \(\therefore\) Remainder should be 0 . \(\therefore 14 \mathrm{x}-10-\mathrm{y}=0\) \(y=14 x-10\) should be subtracted from given polynomial/```	3
Ans17	$\begin{aligned} & f(x)=\sqrt{3} \mathrm{x}^{2}-8 \mathrm{x}+4 \sqrt{3}=0 \\ & (\mathrm{x}-2 \sqrt{3})(\sqrt{3} x-2)=0 \end{aligned}$	3

	$\begin{aligned} & \mathrm{X}=2 \sqrt{3} \text { or } \mathrm{x}=\frac{2}{\sqrt{3}} \\ & \mathrm{~S}=2 \sqrt{3}+\frac{2}{\sqrt{3}}=\frac{8}{\sqrt{3}}=\frac{- \text { coeff.of } x}{\text { coeff of } x^{2}} \\ & \mathrm{P}=2 \sqrt{3} \times \frac{2}{\sqrt{3}}=\frac{4 \sqrt{3}}{\sqrt{3}}=\frac{- \text { constant terms }}{\text { coeff of } x^{2}} \end{aligned}$ Hence verified	
Ans18	$\begin{aligned} & \text { Let } \mathrm{f}(\mathrm{y})=6 \mathrm{y}^{2}-7 \mathrm{y}+2 \\ & \mathrm{~S}=\frac{7}{6} \mathrm{P}=\frac{1}{3} \\ & \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}=\frac{7 / 6}{1 / 3}=\frac{7}{2} \\ & \frac{1}{\alpha} \mathrm{x} \frac{1}{\beta}=\frac{7}{1 / 3}=3 \\ & \text { Required polymonail }=\mathrm{y}^{2}-7 / 2 \mathrm{y}+3=1 / 2(2 \mathrm{y} 2-7 \mathrm{y}+6) \end{aligned}$	3
Ans19	$\begin{aligned} & \mathrm{B}=7 \alpha \text { than, } \mathrm{S}=8 \alpha \\ & -\left(\frac{-8}{3}\right)=8 \alpha=\alpha=\frac{1}{3} \\ & \mathrm{P}=7 \alpha^{2}=\frac{2 K+1}{3} \\ & 7(1 / 3)^{2}=\frac{2 K+1}{3}=\mathrm{K}=2 / 3 \end{aligned}$	3
Ans20	Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+2 \mathrm{x}^{3}+8 \mathrm{x}^{2}+12 \mathrm{x}+18$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+5$ In dividing $\mathrm{f}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ we get $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+3$ and $\mathrm{r}(\mathrm{x})=2 \mathrm{x}+3$ on comparing the remainder with $\begin{aligned} & \mathrm{px}+\mathrm{q}, \\ & \mathrm{Px}+\mathrm{q}=2 \mathrm{x}+3 \quad \mathrm{P}=2 \quad \mathrm{q}=3 \end{aligned}$	3
Ans21	By division algorithm, we have $f(x)=g(x) x q(x)+r(x)$ $\mathrm{f}(\mathrm{x})-\mathrm{r}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{xq}(\mathrm{x})$ $\mathrm{f}(\mathrm{x})+\{-\mathrm{r}(\mathrm{x})\}=\mathrm{g}(\mathrm{x}) \mathrm{xq}(\mathrm{x})$ on dividing $\mathrm{f}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ we get $\mathrm{q}(\mathrm{x})=4 \mathrm{x}^{2}-6 \mathrm{x}+22 \text { and } \mathrm{r}(\mathrm{x})=-61 \mathrm{x}+65$ \therefore We should add $-\mathrm{r}(\mathrm{x})=61 \mathrm{x}-65$ to $\mathrm{f}(\mathrm{x})$ so that the resulting polynomial is divisible by $\mathrm{g}(\mathrm{x})$.	4
Ans22	$\begin{aligned} & \text { Let } \mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+3 \mathrm{x}+\lambda \\ & \mathrm{P}(1 / 2)=2(1 / 2)^{2}+3 \mathrm{x} 1 / 2+\lambda=0 \\ & \lambda=-2 \\ & \alpha+\frac{1}{2}=\frac{-3}{2} \quad \alpha=-2 \end{aligned}$	4
Ans23	Let α and $\frac{1}{\alpha}$ be the zeroes $\mathrm{P}=\alpha \times 1 / \alpha=1=\frac{6 a}{a^{2}+9}=\mathrm{a}=3$	4
Ans24	$\therefore \sqrt{\frac{5}{3}}$ and $\sqrt{\frac{-5}{3}}$ are zeroes so, $\left(x-\sqrt{\frac{5}{3}}\right)\left(x-\sqrt{\frac{5}{3}}\right)=x^{2}-=\frac{5}{3}$ is factor of the given polynomial on dividing the given polynomial by $\mathrm{x}^{2}-\frac{5}{3}$ we get $3 x^{2}+6 x+3$ as $q(x)$ and remainder 0 $3(x+1)(x+1)$ Other zeros are $-1,-1$	4
Ans25	$\begin{aligned} & \text { From polynomial , } 6 \mathrm{x}^{2}+\mathrm{x}-1 \\ & \alpha+\beta=-1 / 6 \\ & \alpha \beta=-1 / 6 \\ & \alpha^{3} \beta+\alpha \beta^{3} \\ & \alpha \beta\left(\alpha^{2}+\beta^{2}\right) \\ & \alpha \beta\left[(\alpha+\beta)^{2}-2 \alpha \beta\right] \\ & -\frac{1}{6}\left[(-1 / 6)^{2}-2(-1 / 6)\right] \\ & -\frac{1}{6}[1 / 36+1 / 3] \\ & -\frac{1}{6} \mathrm{x}\left(\frac{1+12}{36}\right) \\ & -\frac{13}{216} \end{aligned}$	4
Ans26	If $\sqrt{3}$ is a zero of given polymonial then $x-\sqrt{3}$ must be its factor: on dividing $x 3+x 2-3 x-3$ by $x-\sqrt{3}$ we get $x^{2}+(\sqrt{3}+1) x+\sqrt{3}$ as quotient and zero as reminder.	4

	$\begin{aligned} & \mathrm{x}^{2}+(\sqrt{3}+1) \mathrm{x}+\sqrt{3} \\ & \mathrm{x}^{2}+\sqrt{3} \mathrm{x}+\mathrm{x}+\sqrt{3} \\ & \mathrm{x}(\mathrm{X}+\sqrt{3} \mathrm{x}+1(\mathrm{X}+\sqrt{3} \\ & (\mathrm{x}+\sqrt{3})(\mathrm{x}-1) \\ & \therefore \text { other zero are }-\sqrt{3},-1 . \end{aligned}$	
Ans27	$(x-2+\sqrt{3})(x-2-\sqrt{3})$ as factor on dividing given polynomial by it we get $\mathrm{x}^{2}-2 \mathrm{x}-35$ \therefore other zeros are -5 and 7	4
Ans28	On dividing ax $3+b x-c$ by $x^{2}+b x+c$ we get $a x-a b$ as quotient and $-a c x+b x+b^{2} x+a b c-c$ as reminder. $\begin{aligned} & -a c x+b x+a b^{2} x+a b c-c \\ & x\left(a b^{2}-a c+b\right)+c(a b-1)=0 \\ & =0 \\ & =a b=1 \end{aligned}$ To make the remainder zero, $\mathrm{ab}=1$	4

Test Paper Session 2017-18
CLASS 10
SUBJECT Mathematics
CHAPTER-3 Pair of Linear Equations in two variables

Ans1	$\begin{array}{ll} \frac{b}{2}=\frac{2 k}{5} \quad \neq & -\frac{2}{1} \text { for parallel lines } \\ \mathrm{K}=15 / 4 \end{array}$	1
Ans2	$\begin{aligned} & \text { Intersecting point will be }(0, y) \\ & \mathrm{x}-\mathrm{y}=8 \\ & 0-\mathrm{y}=8 \\ & \mathrm{Y}=-8 \\ & \therefore \text { Required } \mathrm{pt} \text { is }(0,-8) \\ & \hline \end{aligned}$	1
Ans3	On dividing $\mathrm{x}^{2}-5 \mathrm{x}-6$ by $\mathrm{x}-6$ we get $\mathrm{x}+1$ as quotient and zero as remainder \therefore other zero is -1	1
Ans4	$\frac{4}{12}=\frac{3}{9} \neq \frac{6}{15} \Rightarrow \frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}$ \therefore equations do not represent a pair of coincident lines.	1
Ans5	Yes, $\frac{a 1}{a 2}=\frac{2 a}{4 a}=\frac{1}{2}, \frac{b 1}{b 2}=\frac{b}{2 b}=\frac{1}{2}, \frac{c 1}{c 2}=\frac{-a}{-2 a}=\frac{1}{2}$ \therefore equations are consistent	2
Ans6	$\frac{a 1}{a 2}=\frac{1}{6}, \frac{b 1}{b 2}=\frac{-1}{6} \Rightarrow \frac{a 1}{a 2} \neq \frac{b 1}{b 2}$ so it has a unique solution and is consistent.	2
Ans7	$\frac{a 1}{a 2}=\frac{5}{7} \frac{b 1}{b 2}=\frac{-2}{3} \Rightarrow \frac{a 1}{a 2}=\frac{b 1}{b 2}$ so it has a unique solution and is consistent.	2
Ans8	$\frac{a 1}{a 2}=\frac{2}{3}, \frac{b 1}{b 2}=\frac{2}{3}=\frac{c 1}{c 2}=\frac{2}{3} \Rightarrow \frac{a 1}{a 2}=\frac{b 1}{b 2}=\frac{c 1}{c 2}=$ coincident lines.	2
Ans9	$\frac{a 1}{a 2}=\frac{9}{18}=\frac{1}{2}, \frac{b 1}{b 2}=\frac{1}{2}, \frac{c 1}{c 2}=\frac{1}{2} \Rightarrow \frac{a 1}{a 2}=\frac{b 1}{b 2}=\frac{c 1}{c 2}=$ coincident lines.	2
Ans10	$\begin{aligned} & \frac{a 1}{a 2}=3 \frac{b 1}{b 2}=3 \frac{c 1}{c 2}=\frac{10}{9} \\ & \frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}=\text { parallel lines } \end{aligned}$	2
Ans11	For coincident lines $\frac{a 1}{a 2}=\frac{b 1}{b 2}=\frac{c 1}{c 2}$ $\begin{aligned} & \frac{k+1}{5}=\frac{3 k}{k}=\frac{15}{5} \\ & \frac{k+1}{5}=3 \\ & \mathrm{k}=14 \end{aligned}$	2
Ans12	For no solution : $\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}$ $\begin{aligned} & \frac{k}{12}=\frac{3}{k}=\frac{-(k-3)}{-k} \\ & \mathrm{~K}^{2}=36 \\ & \mathrm{~K}=6 \end{aligned}$	2
Ans13	$\mathrm{x}=1, \mathrm{y}=-1$	3
Ans14	$\mathrm{x}=2, \mathrm{y}=1$	3
Ans15	$\begin{gathered} \frac{2}{a-b}=\frac{3}{a+b}=\frac{7}{3 a+b-2} \\ \mathrm{a}=5 \mathrm{~b} \quad \mathrm{a}-2 \mathrm{~b}=3 \\ 5 \mathrm{~b}-2 \mathrm{~b}=3 \\ \mathrm{~b}=1 \\ \text { so } \mathrm{a}=5 \end{gathered}$	3
Ans16	$\frac{a 1}{a 2}=\frac{7}{5}, \frac{b 1}{b 2}=\frac{2}{3}$ $\frac{a 1}{a 2} \neq \frac{b 1}{b 2} \therefore$ unique solution. On solving the equations we get, $x=3$ and $y=-7$	3
Ans17	$\begin{align*} & x+3 x+y=180 \\ & 4 x+y=180 \tag{i}\\ & 3 y-5 x=30 \end{align*}$ On solving (i) and (ii) $\begin{aligned} & \mathrm{x}=30 \\ & \angle \mathrm{~A}=30^{\circ}, \angle \mathrm{B}=90^{\circ} \angle \mathrm{C}=60^{\circ} \end{aligned}$	3

Ans18	Let $\frac{1}{x-1}=\mathrm{p}$ and $\frac{1}{y-2}=\mathrm{q}$ The given equation becomes, $\begin{align*} & 6 p-3 q=1 \tag{i}\\ & 5 p+q=2 \tag{ii} \end{align*}$ on solving (i) and (ii) we get, $\mathrm{P}=\frac{1}{3}$ and $\mathrm{q}=\frac{1}{3}$ $\begin{array}{ll} \frac{1}{x-1}=\frac{1}{3} & \frac{1}{y-2}=\frac{1}{3} \\ x=4 & y=5 \end{array}$	3
Ans19	Let A's present age be x years and B's present age by y years. Five years ago, $\begin{align*} & A=(x-5) \text { years } B \quad(y-5) \text { years } \\ & \begin{array}{l} (x-5)=3(y-5) \\ 3 y-x=10 \end{array} \\ & \begin{array}{lll} \text { Ten years hence, } A=x+10 & \text { (i) } & \\ x+10=2(y+10) & \\ \begin{array}{ll} & y+10 \\ 2 y-10 & \text { (ii) } \end{array} & \end{array} \tag{i} \end{align*}$ On solving (i) and (ii) we get, $x=50$ years and $B=20$ years	3
Ans20	Let the number be x and demo be y then fraction becomes $\frac{x}{y}$ $\begin{aligned} & \frac{x-1}{y}=\frac{1}{3} \\ & 3 \mathrm{x}-\mathrm{y}=3 \text { (i) } \\ & \frac{x}{y+8}=\frac{1}{4} \\ & 4 \mathrm{x}-\mathrm{y}=8 \end{aligned}$ On solving (i) and (ii) we get $\mathrm{x}=5-12$ so require fractions $5 / 12$.	3
Ans21		4
Ans22	$\begin{array}{ll} \text { By elimination method, } 3 \mathrm{x}-5 \mathrm{y}=4 & \text { (i) } \begin{array}{c} 9 \mathrm{x}-2 \mathrm{y}=7 \text { (ii) } \\ \text { Multiply eq (i) by 3, we get } \end{array} \\ & 9 \mathrm{x}-15 \mathrm{y}=12 \text { (iii) } \\ 9 \mathrm{x}-2 \mathrm{y}=7 \text { (ii) } \end{array}$ Subtracting (ii) from (iii) we get, $\begin{gathered} 9 x-15 y=12 \\ 9 x-2 y=7 \\ -13 y=5 \\ Y=-5 / 13 \end{gathered}$ Putting the value of y in equation $i(i)$ we have, $\begin{aligned} & 9 x-2\left(\frac{-5}{13}\right)=7 \\ & x=\frac{9}{13} \\ & \therefore \text { required solution is } x=\frac{9}{13}, y=\frac{-5}{13} \end{aligned}$	4
Ans23	Let the digits at units place be x and tens place be y then number becomes $10 \mathrm{y}+\mathrm{x}$ No. formed by inter changing the digits $=10 \mathrm{x}+\mathrm{y}$ $\begin{aligned} & (10 y+x)+(10 x+y)=110 \\ & x+y=10 \quad \text { (i) } \\ & 10 y+x-10=5(x+y)+4 \\ & 4 x-5 y=-14 \text { (ii) } \end{aligned}$ On solving (i) and (ii) $\begin{aligned} & x=4 \quad y=6 \\ & \therefore \text { NO } \quad \text { is } 10 \times 6+4=64 \end{aligned}$	4

Ans24	Let CP of table be Rs x and $C p$ of chair be Rs y. A / c to I condition, S.P of table $=\mathrm{x}+\frac{10 x}{100}=\frac{100 x}{100}$ S.P of chairs $=y+\frac{25 y}{100}$ So, $\frac{1 \text { to } x}{100}+\frac{125 y}{100}=1050-$ (i) A/C to $2^{\text {nd }}$ condition, S.P of table $=\mathrm{x}+\frac{25 x}{100}=\frac{125 x}{100}$ S.P o of chair $=y+\frac{10 y}{100}=\frac{110 y}{100}$ So, $\frac{125}{100} \mathrm{x}+\frac{110 y}{100}=1065=$ (ii) On solving (i) and (ii) we get $x=500, y=400$ $\therefore \mathrm{cp}$ of table of Rs 500 and cp of chair is Rs 400 .	4
Ans25	Let one man alone can finish the work is x days and one boy can finish the work in y days then. One day work of one man $=\frac{1}{x^{\prime}}$, One day work of one boy $=\frac{1}{y}$ \therefore one day work of 8 men $=\frac{8}{x}$, one day work of 12 boys $=\frac{12}{y}$ A/c to question, $10\left(\frac{8}{x}+\frac{12}{y}\right)=1$ $\begin{equation*} \frac{80}{x}+\frac{120}{y}=1 \tag{1} \end{equation*}$ and $14\left(\frac{6}{x x}+\frac{8}{y}\right)=1 .$ Now, put $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$ in eq (1) and (2) we get $80 u+120 v=1$ and $\quad 84 u+112 v=1$ By using cross multiplication, we have $\frac{u}{-120+112}=\frac{-v}{-80+84}=\frac{1}{80 \times 112-84 \times 120}$ On solving further, $u=\frac{1}{140}$ and $v=\frac{1}{280}$ $\begin{array}{ll} \frac{1}{x}=\frac{1}{140} & \frac{1}{y}=\frac{1}{280} \\ x=140 & y=280 \end{array}$ \therefore one man alone can finish the work in 140 days and one boy is 280 days.	4
Ans26	$\mathrm{x}=2, \mathrm{y}=-1$	4
Ans27	Rs 10, Rs 15	4
Ans28	(0,0), (4,4), (6,2)	4

CLASS 10

SUBJECT Mathematics
Chapter 4 Quadratic Equations

Ans1	$\begin{aligned} & D=b^{2}-4 a c=(-b)^{2}-4(6)(2)=b^{2}-48 \\ & b^{2}-48=1 \\ & b^{2}=49 \\ & b= \pm 7 \end{aligned}$	1
Ans2	$\sqrt{2 x^{2}+9}=9$ Squaring both sides $\begin{aligned} & 2 x^{2}+9=81 \\ & 2 x^{2}=72 \\ & x^{2}=36 \\ & x= \pm 6 \end{aligned}$	1
Ans3	$\begin{aligned} & \left(\frac{1}{2}\right)^{2}+K\left(\frac{1}{2}\right)-\frac{5}{4}=0 \\ & K=2 \end{aligned}$	1
Ans4	$\begin{aligned} & \text { For equal roots } \mathrm{D}=0 \\ & \mathrm{~b}^{2}-4 \mathrm{ac}=0 \\ & (1)^{2}-4 \times K \times K=0 \\ & 1 \quad-4 \mathrm{k} 2=0 \\ & \mathrm{~K}= \pm \frac{1}{2} \\ & \hline \end{aligned}$	1
Ans5	$\begin{aligned} & \mathrm{D}=0 \\ & \mathrm{~b} 2-4 \mathrm{ac}=0 \\ & (-2 \mathrm{k})^{2}-4(\mathrm{k})(6)=0 \\ & 4 \mathrm{k}^{2}-24 \mathrm{k}=0 \\ & 4 \mathrm{k}(\mathrm{k}-6)=0 \\ & \mathrm{~K}=0,6 \end{aligned}$	2
Ans6	$\begin{aligned} & 10 x-\frac{1}{x}=3 \\ & 10 \mathrm{x}^{2}-1=3 \mathrm{x} \\ & 10 \mathrm{x}^{2}-3 \mathrm{x}-1=0 \\ & 10 \mathrm{x}^{2}-5 \mathrm{x}+2 \mathrm{x}-1=0 \\ & 5 \mathrm{x}(2 \mathrm{x}-1)+1(2 \mathrm{x}-1)=0 \\ & \mathrm{x}=-\frac{1}{5}, 1 / 2 \end{aligned}$	2
Ans7	$\begin{aligned} & 15 x^{2}-10 \sqrt{6} x+10=0 \\ & 5\left(3 x^{2}-2 \sqrt{6} x+2\right)=0 \\ & 3 x^{2}-\sqrt{6} x-\sqrt{6} x+2=0 \\ & \sqrt{3} x(\sqrt{3} x-\sqrt{2})-\sqrt{2}(\sqrt{3} x-\sqrt{2})=0 \\ & (\sqrt{3} x-\sqrt{2}) \sqrt{3} x-\sqrt{2}=0 \\ & x=\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{aligned}$	2
Ans8	$\begin{aligned} & \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac} \\ & (10)^{2}-4 \times 13 \sqrt{3} \times \sqrt{3} \\ & =100-156 \\ & =-56 \\ & \text { No real roots } \end{aligned}$	2
Ans9	$\begin{aligned} & \quad \frac{1}{a+b+x}=\frac{b x+a x+a b}{a b x} \\ & a b x=(b x+a x+a b)(a+b+x) \\ & a b x=a b x+b^{2} x+b x^{2}+a^{2} x+a b x+a x^{2}+a^{2} b+a b^{2}+a b x \\ & 0=\mathrm{bx}^{2}+\mathrm{ax}^{2}+b^{2} x+\mathrm{a}^{2} x+2 a b x+a^{2} b+a b^{2} \\ & =x^{2}(a+b)+x\left(a^{2}+b^{2}+2 a b\right)+a b(a+b) \\ & =(a+b)\left[x^{2}+x(a+b)+a b\right] \\ & =x^{2}+a x+b x+a b \\ & =x(x+a)+b(x+a) \end{aligned}$	2

	$\begin{aligned} & 0=(x+b)(x+a) \\ & x=-b,-a \end{aligned}$	
Ans10	$\begin{aligned} & 3 x^{2}-2 \sqrt{6} x+2=0 \\ & 3 x^{2}-\sqrt{6} x-\sqrt{6} x+2=0 \\ & x=\sqrt{2 / 3}, \sqrt{2 / 3} \end{aligned}$	2
Ans11	$\begin{aligned} & a^{a b x^{2}+\left(b^{2}-a c\right) x-b c=0} \\ & a b x^{2}+b^{2} x-a c x-b c=0 \\ & b x(a x+b)-c(a x+b) 0 \\ & x=c / b,-b / a \end{aligned}$	2
Ans12	$\begin{aligned} & 4 \sqrt{5} x^{2}-17 x+3 \sqrt{5}=0 \\ & 4 \sqrt{5} x^{2}-5 x-12 x+3 \sqrt{5}=0 \\ & \sqrt{5} x(4 x-\sqrt{5})-3(4 x-\sqrt{5})=0 \\ & (\sqrt{5} x-3)(4 x-\sqrt{5})=0 \\ & x=3 / \sqrt{5}, \sqrt{5} / 4 \end{aligned}$	2
Ans13	$\begin{aligned} & a x^{2}+a=a^{2} x+x \\ & a x^{2}-\left(a^{2}+1\right) x+a=0 \\ & a x^{2}-a^{2} x-x+a=0 \\ & a x(x-a)-1(x-a)=0 \\ & (x-a)(a x-1)=0 \\ & x=a, 1 / a \end{aligned}$	3
Ans14	$\begin{aligned} & 4 \sqrt{3} x^{2}+5 \mathrm{x}-2 \sqrt{3}=0 \\ & 4 \sqrt{3} \mathrm{x}^{2}+8 \mathrm{x}-3 \mathrm{x}-2 \sqrt{3}=0 \\ & 4 x(\sqrt{3} \mathrm{x}+2)-\sqrt{3}(\sqrt{3} \mathrm{x}+2)=0 \\ & (4 x-\sqrt{3})(\sqrt{3} \mathrm{x}+2)=0 \\ & x=\frac{\sqrt{3}}{4}, \frac{-2}{\sqrt{3}} \end{aligned}$	3
Ans15	For real and equal roots $\mathrm{D}=0$ $\mathrm{x}^{2}+\mathrm{kx}+64=0$ $\mathrm{x}^{2}-8 \mathrm{x}+\mathrm{k}=0$ $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0$ $\mathrm{D}=\mathrm{b} 2-4 \mathrm{ac}$ $\mathrm{k}^{2}-256=0$ $=64-4 \mathrm{k}=0$ $\mathrm{k}= \pm 16$ $\mathrm{k}=16$	3
Ans16	$\begin{aligned} & \mathrm{D}=\overline{\mathrm{b}} 2-4 \mathrm{ac} \\ & =48-48=0 \end{aligned}$ Roots are real and equal $\begin{aligned} & 3 x^{2}-4 \sqrt{3} x+4=0 \\ & 3 x^{2}-2 \sqrt{3} x-2 \sqrt{3} x+4=0 \\ & (\sqrt{3} x-2)(\sqrt{3} x-2)=0 \\ & x=\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}} \end{aligned}$	3
Ans17	$\begin{aligned} & (c-a)^{2}-4(b-c)(a-b)=0 \\ & c^{2}+a^{2}-2 a c-4\left(b a-b^{2}-a c+b c\right)=0 \\ & c^{2}+a^{2}-2 a c-4 b a+4 b^{2}+4 a c-4 b c=0 \\ & c^{2}+a^{2}+2(a)(c)-2(2 b)(a)+(2 b)^{2}+2(2 b(c)=0 \\ & (c+a-2 b)^{2}=0 \\ & c+a=2 b \end{aligned}$	3
Ans18	$\begin{aligned} & x^{2}+(x+1)^{2}=421 \\ & x^{2}+x^{2}+2 x+1=421 \\ & 2 x^{2}+2 x-420=0 \\ & x^{2}+x-210=0 \end{aligned}$	3
Ans19	$\begin{aligned} & \frac{x+1}{x-1}+\frac{x-2}{x+2}=3 \\ & \mathrm{x}^{2}+3 \mathrm{x}-10=0 \\ & \mathrm{x}=2,-5 \end{aligned}$	3
Ans20	$x=\frac{+6 \pm \sqrt{36+40}}{10}=\frac{-6+ \pm \sqrt{76}}{10}$	3

	$=\frac{+6 \pm 2 \sqrt{19}}{10}==\frac{-3+ \pm 19}{10}$	
Ans21	Let x be the usual speed, $\begin{aligned} & \frac{300}{x}-\frac{300}{x+5}=2 \\ & x=-30,25 \end{aligned}$ \therefore usual speed of the train $=25 \mathrm{~km} / \mathrm{hrs}$	4
Ans22	$\begin{aligned} & \frac{1}{2} \times 5 \mathrm{x} \times(3 \mathrm{x}-1)=60 \\ & \mathrm{x}=3,-8 / 3 \\ & \mathrm{~L}=5 \mathrm{x} 3=15, B=(3 \mathrm{x}-1)=8 \\ & \mathrm{H}=\sqrt{L^{2}+B^{2}}=\sqrt{15^{2}+8^{2}}=17 \mathrm{~cm} \end{aligned}$	4
Ans23	$\begin{aligned} & \frac{6500}{x+15}+30=\frac{6500}{x} \\ & x^{2}+15 x-3250=0 \\ & (x+65)(x-50)=0 \\ & x=-65,+50 \end{aligned}$ \therefore neglecting negative number, $\mathrm{x}=50$	4
Ans24	Let num. be x and then deno is $\mathrm{x}+2$ and fraction is $\frac{x}{x+2}$ $\begin{aligned} & \frac{x}{x+2}+\frac{x+2}{x}=\frac{34}{15} \\ & \mathrm{x}^{2}+2 \mathrm{x}-15=0 \\ & (\mathrm{x}+5)(\mathrm{x}-3) \\ & \mathrm{x}=3 \text { neglecting negative value. } \\ & \therefore \text { fraction }=\frac{3}{5} \end{aligned}$	4
Ans25	Let B alone takes x days to finish the work and A alone takes $\mathrm{x}-6$ days. A/c to question, $\frac{1}{x}+\frac{1}{x-6}=\frac{1}{4}$ $\begin{aligned} & x^{2}-14 x+24=0 \\ & (x-12)(x-2)=0 \\ & x=12,2 \end{aligned}$ But x cannot be less than 6 so we take $\mathrm{x}=12$ \therefore B can finish the work in 12 days.	4
Ans26	Let the speed of stream is $x \mathrm{~km} / \mathrm{hr}$ Speed in upstream $=(15-\mathrm{x}) \mathrm{km} / \mathrm{hr}$ speed in down stream $=(15+\mathrm{x}) \mathrm{km} / \mathrm{hr}$ $\begin{aligned} & \frac{30}{15+x}+\frac{30}{15-x}=4 \frac{1}{2} \\ & -\mathrm{x}^{2}+225-200=0 \\ & \mathrm{x}= \pm 5 \end{aligned}$ \therefore speed of stream $=5 \mathrm{~km} / \mathrm{hr}$	4
Ans27	Let time taken by tap of larger diameter $=\mathrm{x}$ hrs Let time taken by tap of smaller diameter $=x+2$ hrs A / C to question,$\frac{1}{x}+\frac{1}{x-2}=\frac{12}{35}$ $\begin{aligned} & 6 x^{2}-23 x-35=0 \\ & (6 x+7)(x-5)=0 \\ & x=-7 / 6,5 \end{aligned}$ Neglecting negative value because time can't be -ve . $\therefore \mathrm{x}=5 \mathrm{hrs} .$ Smaller tap can fill the tank in 7 hrs and larger tank in 5 hrs .	4
Ans28	a) Let the cost price of the toy be Rs x. Then gain $=x \%$ $\begin{aligned} & \text { Gain }=\operatorname{Rs}\left(x \times \frac{x}{100}\right)=\frac{x^{2}}{100} \\ & \mathrm{SP}=\mathrm{C} \cdot \mathrm{P}+\text { gain } \\ & 24=\mathrm{x}+\frac{x^{2}}{100} \\ & \mathrm{x}^{2}+100 \mathrm{x}-2400=0 \\ & (\mathrm{x}-20)(\mathrm{x}+120)=0 \\ & \mathrm{x}=20,-120 \end{aligned}$ C.P of is Rs. 20 b) Quadratic Equation c) Genuine Profit	4

Test Paper Session 2017-18

CLASS 10

SUBJECT Mathematics
Chapter 5 Arithmetic Progression

Ans1.	$\begin{aligned} & \mathrm{a}-18=-3-\mathrm{b} \\ & \mathrm{a}+\mathrm{b}=15 \end{aligned}$	1
Ans2	$a=3, d=1-3=-2, a_{5}=3+(5-1)(-2) \quad a_{5}=-5$	1
Ans3	$\mathrm{a}=-2, \mathrm{~d}=-2, \mathrm{a}_{1}=-2, \mathrm{a}_{2}=-4, \mathrm{a}_{3}=6, \mathrm{a}_{4}=-8$	1
Ans4	$\begin{aligned} & 4 \mathrm{k}-6-\mathrm{k}-2=3 \mathrm{k}-2-4 \mathrm{k}+6 \\ & 3 \mathrm{k}-8=-\mathrm{k}+4 \\ & 4 \mathrm{k}=12 \\ & \mathrm{k}=3 \end{aligned}$	1
Ans5	Let $\mathrm{n}^{\text {th }}$ term of A.P be zero; $\mathrm{a}_{\mathrm{n}}=0$ $\begin{aligned} & \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=0 \\ & 120+(\mathrm{n}-1) \quad(-4)=0 \\ & \mathrm{n}=31 \end{aligned}$ \therefore The first negative term will be $31+1=32^{\text {nd }}$ term.	2
Ans6	$\begin{aligned} & \text { If } a_{n}=184, a=3, d=4 \\ & a_{n}=a+(n-1) d \\ & 184=3+(n-1) 4 \\ & n=46.25 \end{aligned}$ Thus 184 is not term of given A.P.	2
Ans7	$\begin{aligned} & 2 x+1-x-3=x-7-2 x-1 \\ & x=-3 \end{aligned}$	2
Ans8	$\begin{aligned} & \text { Put } a_{n}=100, a=25, d=3 \\ & a_{n}=a+(n-1) d \\ & 100=25+(n-1) d \\ & N=26 \\ & \therefore 100 \text { is a term of given A.P } \end{aligned}$	2
Ans9	$\begin{aligned} & \text { Let } \mathrm{a}=3, \mathrm{~d}=7 \\ & \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{13}+84 \\ & \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{a}+12 \mathrm{~d}+84 \\ & \mathrm{n}=25 \end{aligned}$	2
Ans10	$\begin{aligned} & 5 a_{5}=8 a_{8} \\ & 5(a+4 d)=8(a+7 d) \\ & a+12 d=0 \\ & a_{13}=0 \end{aligned}$	2
Ans11	$\begin{aligned} & \text { Let common diff. }=\mathrm{d} \\ & \mathrm{a}+\mathrm{d}=10 ; \mathrm{a}+4 \mathrm{~d}=31 \\ & \mathrm{~d}=7 \mathrm{and} \mathrm{a}=3 \\ & \mathrm{a}=3, \mathrm{~b}=17, \mathrm{c}=24 \end{aligned}$	2
Ans12	$\begin{aligned} & \mathrm{a}_{8}=0 \quad \mathrm{a}=-7 \mathrm{~d} \\ & \mathrm{a}_{38}=\mathrm{a}+37 \mathrm{~d}=-7 \mathrm{~d}+37 \mathrm{~d}=30 \mathrm{~d} \\ & \mathrm{a}_{18}=\mathrm{a}+17 \mathrm{~d}=-7 \mathrm{~d}+17 \mathrm{~d}=10 \mathrm{~d} \\ & \mathrm{a}_{38}=3 \times 10 \mathrm{~d}=3 \times \mathrm{a}_{18} \\ & \therefore \mathrm{a}_{38}=3 \mathrm{a}_{18} \end{aligned}$	2
Ans13	$\begin{aligned} & \mathrm{a}=254, \mathrm{~d}=-5 \\ & \mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d}=254+9(-5)=209 \\ & \therefore 10^{\text {th }} \text { term from the back is } 209 . \end{aligned}$	3
Ans14	$\begin{aligned} & a_{n}=S_{n-} S_{n-1} \\ & \left.\begin{array}{rl} a_{n-1}=S_{n-1}-S_{n-2} & \\ \begin{array}{rl} S_{n}-2 S_{n-1}+S_{n-2} & =S_{n}-S_{n-1}-S_{n-1}+S_{n-2} \\ & =\left(S_{n}-S_{n-1}\right)-\left(S_{n-1}-S_{n-2}\right) \\ & =T_{n}-T_{n-1}=d \end{array} \end{array} . \begin{array}{rl} \end{array}\right) \end{aligned}$	3
Ans15	$\begin{aligned} & a=101, d=7, a_{n}=997 \\ & a_{n}=a+(n-1) d \end{aligned}$	3

	$\begin{aligned} & 997=101+(\mathrm{n}-1) 7 \\ & \mathrm{n}=129 \end{aligned}$	
Ans16	Let the number of terms be n and a_{n} be x . $\begin{aligned} & \mathrm{a}=-4, \mathrm{~d}=3 \\ & \mathrm{x}=-4+(\mathrm{n}-1)^{3} \\ & \mathrm{n}=\frac{x+7}{3} \\ & \frac{(x+7)(x-4)}{6}=437 \\ & \mathrm{x}=50 \text { or }-53 \end{aligned}$ Neglecting -ve values, $\mathrm{x}=50$	3
Ans17	The series as per question is $102,108,114,-----, 198$ is an AP $198=102+(\mathrm{n}-1) 6$ $\begin{aligned} & \mathrm{n}=17 \\ & \mathrm{~S}_{\mathrm{n}}=\mathrm{S}_{17}=17 / 2(102+198)=2550 \end{aligned}$	3
Ans18	$\begin{aligned} & \mathrm{a}=9, \mathrm{~d}=-3 \mathrm{~S}_{\mathrm{n}}=-216 \\ & \mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=-216 \\ & \mathrm{n} / 2[2(9)+(\mathrm{n}-1)(-3)=-216 \\ & \mathrm{n}^{2}-7 \mathrm{n}-144=0 \\ & \mathrm{n}=-9 \text { or } 16 \\ & \therefore \mathrm{n}=16 \text { neglacting }- \text { ve values } \\ & \hline \end{aligned}$	3
Ans19	$\begin{aligned} & \mathrm{S}_{\mathrm{n}}=3 \mathrm{n}^{2}-4 \mathrm{n} \\ & \mathrm{~S}_{1}=-1, \mathrm{~S}_{2}=4 \\ & \mathrm{a}_{1}=\mathrm{S}_{1}=-1 \\ & \mathrm{a}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=4-(-1)=5 \\ & \mathrm{~d}=6 \\ & \mathrm{a}_{12}=(-1)+11 \times 6=65 \end{aligned}$	3
Ans20	$\begin{aligned} & \mathrm{a}=12, \mathrm{a}_{\mathrm{n}}=264, \mathrm{~d}=4 \\ & \mathrm{n}=\frac{a_{n}-a}{d}+1=\frac{264-12}{4}+1=64 \end{aligned}$ There are 64 ,multiples of 4 that lie between 11 and 266.	3
Ans21	$\begin{aligned} & \mathrm{S} 4=280, \mathrm{~d}=20 \mathrm{n}=4 \\ & \mathrm{~S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & \mathrm{S}_{\mathrm{n}}=\frac{4}{2}[2 \mathrm{a}+3 \mathrm{x} 20] \\ & =2(2 \mathrm{a}+60) \\ & \frac{280}{2}=2 \mathrm{a}+60 \\ & \mathrm{a}=40 \\ & \therefore \text { four prizes are Rs } 40,60,80 \text { and Rs } 100 \\ & \hline \end{aligned}$	4
Ans22	Let $1^{\text {st }}$ term $=\mathrm{a}$, common diff $=\mathrm{d}$ $\mathrm{S}_{\mathrm{m}}=\mathrm{S}_{\mathrm{n}}$ $\begin{aligned} & \frac{m}{2}[2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}]=\frac{n}{2}[2 \mathrm{a}+(-1) \mathrm{d}] \\ & 2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0 \\ & \mathrm{~S}_{\mathrm{m}+\mathrm{n}}=\frac{m+n}{2}[2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}] \\ & =\frac{m+n}{2} \mathrm{x} 0=0 \end{aligned}$	4
Ans23	$\begin{aligned} & \mathrm{a}=20, \mathrm{~d}=15, \mathrm{~S}=3250 \\ & \mathrm{~S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & 3250=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) 15] \\ & \mathrm{n}=-65,20 \\ & \therefore \text { Man will repay loan after } 20 \text { months. } \\ & \hline \end{aligned}$	4
Ans24	$\begin{align*} & \mathrm{a}+2 \mathrm{~d}=11 \tag{1}\\ & \mathrm{a}+9 \mathrm{~d}=2 \quad(\mathrm{a}+4 \mathrm{~d})+1 \\ & -\mathrm{a}+\mathrm{d}=1 \tag{2} \end{align*}$ Solving (1) and (2) $\begin{aligned} & \mathrm{a}=3, \mathrm{~d}=4 \\ & \mathrm{~S}_{3}=\frac{30}{2}[6+2 \mathrm{ax} 4] \\ & =1830 \end{aligned}$	4
Ans25	$\mathrm{a}_{3}+\mathrm{a}_{7}=6 ; \mathrm{a}_{3} \times \mathrm{a}_{7}=8$	4

	$\begin{aligned} & 2 \mathrm{a}+8 \mathrm{~d}=6 ;(\mathrm{a}+2 \mathrm{~d})(\mathrm{a}+6 \mathrm{~d})=8 \\ & \mathrm{a}+4 \mathrm{~d}=3=\mathrm{a}=3-4 \mathrm{~d} \\ & (3-4 \mathrm{~d}+2 \mathrm{~d})(3-4 \mathrm{~d}+6 \mathrm{~d})=8 \\ & (3+2 \mathrm{~d}(3-2 \mathrm{~d})=8 \\ & 9-4 \mathrm{~d}^{2}=8 \\ & \mathrm{~d}=-\frac{1}{2}, \frac{1}{2} \\ & \text { If } \mathrm{d}=\frac{1}{2} ; \mathrm{a}=1 \text { and } \mathrm{S}_{20}=115 \\ & \text { If } \mathrm{d}=-\frac{1}{2} ; \mathrm{a}=5 \text { and } \mathrm{S}_{20}=5 \\ & \hline \end{aligned}$	
Ans26	$\begin{aligned} & \mathrm{n}=21 \\ & \text { Middle most term }=\frac{21+1}{2}=11^{\text {th }} \\ & 3 \text { middle most terms are } 10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }} \\ & a_{10}+a_{11}+a_{12}=129 \\ & a+9 d+a+10 d+a+11 d=129 \\ & a+10 d=43 \quad(1) \\ & a_{19}+a_{20}+a_{21}=237 \\ & a+18 d+a+19 d+a+20 d=237 \\ & a+19 d=79 \\ & \text { on solving }(1) \text { and }(2), \\ & 9 d=36 \\ & d=4 \\ & a=43-40=3 \\ & \hline \end{aligned}$	4
Ans27	Let $r_{1}, r_{2}---$ be the radii of semicircles and $L_{1}, L_{2}----$ be the length of circumferences of semicircles, then $\mathrm{L}_{1}=\pi \mathrm{r}_{1}=\pi(1)=\pi \mathrm{cm}$ $\mathrm{L}_{2}=\pi \mathrm{r}_{2}=\pi(2)=2 \pi \mathrm{~cm}$ $\mathrm{L}_{3}=3 \pi \text { and }--------\mathrm{L}_{11}=11 \pi c m$ Total length of the spiral $=L_{1}+L_{2}+---+L_{11}=\pi\left(\frac{11 \times 12}{2}\right)=207.24 \mathrm{~cm}$.	4
Ans28	$\begin{aligned} & \mathrm{S}_{1}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & \mathrm{S}_{2}=\frac{2 n}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}] \\ & \mathrm{S}_{3}=\frac{3 n}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}] \\ & 3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)=3\left[\frac{2 n}{2}\{2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}\}-\frac{n}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}\right] \\ & =3\left[\frac{n}{2}(2 \mathrm{a}+3 \mathrm{nd}-\mathrm{d})\right] \\ & =\frac{3 n}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}] \\ & =\mathrm{S}_{3} \end{aligned}$	4

Test Paper Session 2017-18
CLASS 10 SUBJECT Mathematics CHAPTER- 6 Triangles

Ans	$25^{2}=24^{2}+7^{2}=625=576+49$ \therefore the given Δ form a right Δ form a right Δ	1
Q2.	$\angle A O B=\angle C O D \quad$ (V.O.A) $\angle B A D=\angle C D A$ (alternate) $\therefore \triangle \mathrm{A} \mathrm{OB} \sim \triangle \mathrm{DOC}(\mathrm{~A} \mathrm{~A})$	1
Q3.		1
Q4.	XYIIBC $\triangle \mathrm{AXY} \sim \triangle \mathrm{ABC} A A$ $\therefore \angle A=\angle A$ common $\angle A X Y=\angle A B C$ corresponding $\frac{A X}{A B}=\frac{X Y}{B C}=\frac{A Y}{A C}$ $\frac{1}{1+3}=\frac{X Y}{6} \quad X Y=\frac{6}{4}=\frac{3}{2}=1.5 \mathrm{~cm}$	1
Ans5	Given A square ABCD and equilateral $\triangle \mathrm{BCE}$ and $\triangle \mathrm{ACF}$ on one side BC of square and diagonal aC respectively. To Prove : or $\triangle \mathrm{BCE}=\frac{1}{2} \mathrm{as} \triangle \mathrm{ACF}$ Since each of $\triangle B C E$ and $\triangle A C F$ is an equilateral Δ so each angle of each of them is 60° Hence $\triangle B C E \sim \triangle A C F$ $\frac{A r \triangle B C E}{a r \triangle A C F}=\frac{B C^{2}}{A C^{2}}=\frac{B C^{2}}{2(B C)^{2}}=\frac{1}{2}$ ar $\triangle \mathrm{BCE}=1 / 2 \operatorname{ar} \triangle \mathrm{ACF}$	2
Ans6	Let $A B$ and $C D$ given vertically poles. Then $A B=6 \mathrm{~cm}, C D=11 \mathrm{~m} \mathrm{aC}=12 \mathrm{~m}$ Draw $\mathrm{BEII} A C$ then $\begin{aligned} & C E=A B=6 m, B E=A C=12 m \\ & D E=C D-C E=11 m-6 m=5 m \\ & \triangle B E D \quad B D^{2}=B E^{2}+D E^{2}=12^{2}+5^{2}=144+25 \\ & B D=13 m \end{aligned}$	2

Ans7	$\begin{aligned} & \ln \triangle A B D=A B^{2}={B D^{2}}^{2}+A D^{2} \\ & C^{2}=(a+x)^{2}+h^{2} \\ & C^{2}=a^{2}+2 a x+x^{2}+h^{2} \\ & C^{2}=a^{2}+2 a x+h^{2} \end{aligned}$ Therefore : $h^{2}+x^{2}=b^{2}$	2	
Ans8		2	
Ans9	$\begin{aligned} & \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2} \\ & \mathrm{AB}^{2}=A \mathrm{C}^{2}+\mathrm{BC}^{2} \end{aligned}$ By converse of Pythagoras theorem Δ is right Δ.	2	
Ans10	$\begin{aligned} & \text { Given } \triangle \mathrm{ABC} \sim \\ & \begin{array}{l} \text { ar } \triangle A B C \\ \frac{a r}{\text { a } \triangle D E F}=\frac{B C^{2}}{E F^{2}} \\ \frac{9}{10}=\frac{B C^{2}}{E F^{2}} \\ B C^{2}=\frac{9 \times 4.2 \times 4.2}{16} \\ B C=\frac{3 \times 4.2}{4} \\ =3.15 \mathrm{~cm} \end{array} \\ & \\ & \end{aligned}$	2	
Ans11	$\therefore \mathrm{DE} \\| \mathrm{BC}$ $\angle \mathrm{A}$ is common $\angle \mathrm{ADE}=\angle \mathrm{ABC}$ corresponding $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ by AA	2	
Ans12	$\begin{aligned} & \mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm} \\ & \mathrm{AE}=12 \mathrm{~cm}, \mathrm{AC}=18 \mathrm{~cm} \\ & \frac{A D}{A B}=\frac{A E}{A C} \\ & \frac{8}{12}=\frac{12}{18} \rightarrow \frac{2}{3}=\frac{2}{3} \\ & \frac{A D}{A B}=\frac{A E}{A C} \end{aligned}$ By converse of BPT, DE II BC	2	
Ans13	Given $\triangle A B C$ in which the bisector $A D$ of $\angle A$ meets $B C$ in D. To Prove $\frac{B D}{D C}=\frac{A B}{A C}$	3	

	Construction : Draw CE II DA meeting BA produced in E. Proof CE II DA $<1=<2$ alternate app $<3=<4$ corresponding < But $<1=<3$ given $<2=<4$ $A E=A C$ \therefore CE II DA $\frac{B D}{D C}=\frac{B A}{A E}$ ie. $\frac{B D}{D C}=\frac{A B}{A C}$ $\therefore A C=A E$		
Ans14	$\begin{aligned} & \text { In } \triangle \mathrm{ABC}, \text { DEII } \mathrm{BC} \\ & \frac{A D}{B D}=\frac{A E}{C E}(\mathrm{BPT}) \\ & \frac{4 x-3}{3 x-1}=\frac{8 x-7}{5 x-3} \\ & (4 \mathrm{x}-3)(5 \mathrm{x}-3)=(8 \mathrm{x}-7)(3 \mathrm{x}-1) \\ & 20 \mathrm{x}^{2}-27 \mathrm{x}+9=24 \mathrm{x}^{2}-29 \mathrm{x}+7 \\ & 4 \mathrm{x}^{2}-2 \mathrm{x}-2=0 \\ & 2 \mathrm{x}^{2}-\mathrm{x}-1=0 \\ & 2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-1=0 \\ & 2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0 \\ & (2 \mathrm{x}+1)(\mathrm{x}-1)=0 \\ & \mathrm{X}=1, \mathrm{x}=-1 / 2 \\ & \mathrm{AD}=[4(-1 / 2)-3]=-5 \text { Not Applicable. } \\ & \mathrm{x}=1 \text { Ans } \end{aligned}$	3	
Ans15	Draw EO II AB II CD Now in \triangle ADC EO II DC $\frac{A E}{E D}=\frac{A O}{O C}$ (BPT) $\text { In } \triangle B D E O \\| A B$ $\frac{A E}{E D}=\frac{B O}{O D}$ From 1 and $2 \frac{A O}{O C}=\frac{B O}{O D}$	3	
Ans16	Given $\triangle A B C$ and $\triangle P Q R$ in which $A D$ ad $P S$ are te medians such that $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P S}$ To Prove $\triangle A B C \sim \triangle P Q R$ Proof since $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P S}$ $\frac{A B}{P Q}=\frac{2 B D}{2 Q S}=\frac{A D}{P S}$ $\therefore \mathrm{AD}$ and PS are median $\frac{A B}{P Q}=\frac{B D}{Q S}=\frac{A D}{P S} \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQS}(\mathrm{SSS})$ $<B=<Q$ (Corresponding angles of similar Δ) Now in $\triangle A B C$ and $\triangle P Q R$ $\frac{A B}{P Q}=\frac{B C}{Q R}<B=<Q$	3	

	$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$	
Ans17	$A B+B C+A C=25$ Let $A B=9 \mathrm{~cm}$ since $\triangle A B C \sim \quad \triangle P Q R$ $\begin{aligned} & \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} \quad=\mathrm{K} \text { let } \\ & \mathrm{AB}=\mathrm{kPQ}, \mathrm{BC}=\mathrm{k} \mathrm{QR}, \mathrm{AC}=\mathrm{KPR} \end{aligned}$ Perimeter of $\triangle \mathrm{ABC}=\frac{A B+B C+A C}{P Q+Q R+P R}=\frac{K(P Q+Q R+P R}{P Q+Q R+P R}$ $\begin{aligned} & \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{\text { Perimeter of } \triangle A B C}{P e r i m e t e r ~ o f ~} \triangle P Q R \\ & \frac{9}{P Q}=\frac{25}{15}=P Q=\frac{9 x 15}{25}=5.4 \end{aligned}$ Ans 5.4 cm .	3
Ans18	Let $A B=3.3 \mathrm{~m}$ be the lamp post, $C D=1.1 \mathrm{~m}$ be the position of boy after 4 seconds. Also let shadow of boy after $4 \mathrm{sec}=x \mathrm{~m}$ distance travelled by boy in $4 \mathrm{sec}=y=0.8 \times 4=3.2 \mathrm{~m}$ $\begin{aligned} & \triangle A E B \sim \triangle C E D,<E A B=<E C D=90^{\circ}<E=\angle \mathrm{E} \text { common } \\ & \frac{A E}{\frac{A E}{E C}=\frac{A B}{C D}} \\ & \frac{x=y}{x} \frac{3.3}{1.1} \\ & x+y=3 x y=2 x \\ & x=\frac{y}{2}=\frac{3.2}{2}=1.6 \end{aligned}$ Ans 1.6 m	3
Ans19	Given $\triangle A B C \sim \triangle D E F$ $A L \perp B C, D M \perp E F$ To prove $\frac{\triangle A B C}{\triangle D E F}=\frac{A L^{2}}{D M^{2}}$ Prove : In \triangle ALB and \triangle DME $\measuredangle B=\varangle E(\text { as } \triangle A B C \sim \quad \triangle D E F)$ $\angle \mathrm{ALB}=\angle \mathrm{DME}=90^{\circ}$ $\triangle A B L \sim \triangle D E M$ (AA) Similarity $\begin{aligned} & \frac{A B}{D E}=\frac{A L}{D M} \\ & \frac{\operatorname{ar} \triangle A B C}{\text { ar } \triangle D E F}=\frac{A L^{2}}{D M^{2}} \end{aligned}$ \therefore ratio of reas of two similar Δ 's is equial to ratio of squraes of the corresponding sides $\frac{\triangle A B C}{\triangle D E F}=\frac{A L^{2}}{D M^{2}}$	3

Ans20	Let $A B=A C=B C=6 x$ $\begin{aligned} & \mathrm{BD}=1 / 3 \mathrm{BC}=\frac{1}{3} 6 \mathrm{x}=2 \mathrm{x} \\ & \mathrm{BE}=\mathrm{EC}=\mathrm{BC} / 2=3 \mathrm{x} \end{aligned}$ (Perpendicular bisects the base in an equilaten Δ) $\begin{aligned} & D E=B E-B D=3 x-2 x=x \\ & A B^{2}=A E^{2}+B E^{2}=A D^{2}-D E^{2}+B E^{2} \quad \text { Pythagoras theorem } \\ & (6 x)^{2}=A D^{2}-x^{2}+(3 x)^{2} \\ & A D^{2}=36 x^{2}+x^{2}-9 x^{2}=28 x^{2} \\ & 9 A D^{2}=9(28) x^{2}=9 x 7 x 4 x^{2} \\ & =7(36) x^{2}=7(A B)^{2} \\ & 9 A D^{2}=7 A B^{2} \end{aligned}$	3					
Ans21	```Draw DE \(\perp \mathrm{AB}\) CF \(\perp \mathrm{AB}\) produced \(\triangle \mathrm{AED}\) and \(\triangle \mathrm{BFC}\) \(A D=B C\) \(\triangle\) EF \(=<C F B\) each \(90^{\circ}\) \(D E=C F:\) perpendicular distance between two parallel lines \(\triangle \mathrm{AED} \sim \Delta \mathrm{BFC}\) (RHS) \(\mathrm{AE}=\mathrm{BF}\) LHS AC \(+\mathrm{BD}^{2}=\left(\mathrm{AF}^{2}+\mathrm{CF}^{2}\right)+\left(\mathrm{DE}^{2}+\mathrm{BE}^{2}\right)\) \((\mathrm{AB}+\mathrm{BF})^{2}+\left(\mathrm{BC}^{2}-\mathrm{BF}^{2}\right)+\mathrm{AD}^{2}-\mathrm{AE}^{2}+(\mathrm{AB}-\mathrm{AE})^{2}\) \(\mathrm{AB}^{2}+\mathrm{BF}^{2}+2 \mathrm{AB} \cdot \mathrm{BF}+\mathrm{BC}^{2}-\mathrm{BF}^{2}+\mathrm{AD}^{2}-\mathrm{AE}^{2}+(\mathrm{AB}-\mathrm{AE})^{2}\) \(\mathrm{AB}^{2}+\mathrm{BFx}+2 \mathrm{ABBF}+\mathrm{BC}^{2}-\mathrm{BF}^{2}+\mathrm{AD}^{2}-\mathrm{AE}^{2}+\mathrm{AB}^{2}+\mathrm{AE}^{2}-2 \mathrm{AB} . \mathrm{AE}\) \(\mathrm{AE}=\mathrm{BF}, \mathrm{AB}=\mathrm{CD}\) \(\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}\) Hence Proved```	4					
Ans22	Given : ABCD is trapezium $A B$ II $C D$ and $P Q \\| I D C$ $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm} Q \mathrm{Q}=15 \mathrm{~cm}$ To find AD Proof In trapezum ABCD $A B\\|C D, P Q\\| D C$ $A B\\|C D\\| P Q$ In $\triangle B C D \quad O Q$ II DC $\frac{B O}{O D}=\frac{B Q}{Q C}(\mathrm{BPT})$ In $\triangle \mathrm{DAB}, \mathrm{POIIAB} \frac{B O}{O D}=\frac{A P}{P D}$ (BPT) $\begin{aligned} & \frac{A P}{P D}=\frac{B Q}{Q C} \\ & \frac{A P}{18}=\frac{35}{15} \\ & A P=\frac{35}{15} \times 18=7 \times 6=42 \mathrm{~cm} \\ & A D=A P+P D=42+18=60 \mathrm{~cm} \end{aligned}$	4					
Ans23	Given $\triangle \mathrm{PQR}$ in which $\mathrm{Q} N \perp \mathrm{PR}$ and $\mathrm{PNxNR}=\mathrm{QN}{ }^{2}$ To prove $\angle P Q R=90^{\circ}$ Poof in \triangle QNP and $\triangle Q N R$ $Q N \perp P R$ $\begin{aligned} & \angle 2=\angle 1=90^{\circ} \\ & \mathrm{QN}=N \mathrm{~N}=\mathrm{NNP} \\ & \frac{Q N}{N R}=\frac{N P}{Q N} \rightarrow \frac{Q N}{N P}=\frac{N R}{Q N} \\ & \Delta \mathrm{QNR} \sim \triangle \mathrm{PNQ} \mathrm{SAS} \\ & <3=\angle P,<2=<1=90^{\circ} \\ & <\mathrm{R}=\angle 4 \end{aligned}$ $\text { IN } \triangle P Q R$ $\begin{aligned} & \angle P+P Q R+\angle R=180 \\ & <3+4+<3+<4=180 \end{aligned}$	4					

	$\begin{aligned} & 2(<3+4)=180 \\ & <3+<4=90^{\circ}<\mathrm{PQR}=90^{\circ} \end{aligned}$	
Ans24	Given $\triangle \mathrm{ABC}$ in which $\mathrm{AD} \mathrm{DB}=3 C D$ To Prove $2 A B^{2}=2 A C^{2}+B C^{2}$ Proof: Since $D B=3 C D \quad \frac{D B}{C D}=\frac{3}{1}$ $\begin{array}{lc} \mathrm{DB}=3 \mathrm{x} & \mathrm{CD}=\mathrm{x} \\ \frac{D B}{B C}=\frac{3 x}{4 x}=\frac{3}{4} & \mathrm{DB}=\frac{3}{4} \mathrm{BC} \\ \frac{D C}{B C}=\frac{x}{4 x}=\frac{1}{4} & \mathrm{DC}=\frac{1}{4} \mathrm{BC} \end{array}$ By Pythagoras theorem $\begin{aligned} & A B^{2}=A D^{2}+B D^{2} \\ & =A C^{2}-D C^{2}+B D^{2} \\ & A C^{2}-\frac{1}{16} B C^{2}+\frac{9}{16} B C^{2} \\ & A C^{2}+\frac{8}{16} B C^{2} \\ & A C^{2}+\frac{1}{2} B C^{2} \\ & 2 A B^{2}=2 A C^{2}+B C^{2} \end{aligned}$	4
Ans25	Given : $A B C$ is right \triangle, right angled at C, p is the length of perpendicular from C to $A B$ Proopf : a) an $\triangle A B C=\frac{1}{x} X A B \times C D$ also as $\triangle \mathrm{aBC}=\frac{1}{2} \mathrm{AC} \times B C$ $=\frac{1}{2} \mathrm{ba}$ $\frac{1}{2} \mathrm{cp}=\frac{1}{2} \mathrm{ba} \longrightarrow \mathrm{pc}=\mathrm{ab}$ $\mathrm{C}=\frac{a b}{P}$ In $\triangle \mathrm{ABC}$ $\begin{aligned} & c^{2}=a^{2}+b^{2} \\ & \left(\frac{a b}{P}\right)=a^{2}+b^{2} \\ & \frac{1}{P^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{a^{2}}{a^{2} b^{2}}+\frac{b^{2}}{a^{2} b^{2}} \\ & \frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{a^{2}} \end{aligned}$	4
Ans26	Given $\triangle A B C \sim \quad \triangle D E F, A P$ and $D Q$ are the medians of $\triangle A B C$ and $\triangle D E F$ respectively. To prove $\frac{\operatorname{ar} \triangle A B C}{\text { ar } \triangle D E F}=\frac{A P^{2}}{D Q^{2}}$ Proof : AP and DQ are medians $\therefore \mathrm{BP}=\mathrm{PC}$ and $\mathrm{EQ}=\mathrm{QF}$ Given $\triangle A B C \sim \triangle D E F$ $\begin{aligned} & =\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}<A=\measuredangle D, \triangleleft B=\varangle E \\ & <C=<F \\ & \frac{A B}{D E}=\frac{B C}{E F} \longrightarrow \frac{A B}{D E}=\frac{2 B P}{2 E Q}=\frac{B P}{E Q} \\ & \angle B=<E \\ & \triangle A B P \sim \triangle D E Q \text { SAS } \\ & \frac{\Delta A B C}{\Delta D E F}=\frac{A B^{2}}{D E^{2}} \end{aligned}$ \therefore the ratio of areas of two similar Δs is ratio of squares of their corresponding side from 1 and 2	4

	$\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=\frac{A P^{2}}{D Q^{2}}$	
Ans27	Given : $\triangle A B C$ and $\triangle P Q R$ in which $A D$ and $P S$ are the medians such that $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P S}$ To prove : $\triangle A B C \sim \triangle P Q R$ Construction : Produce AD to E such that AD =DE join EC. Also produce PS to T such that $P S=S T$ joint $T R$ In $\triangle A B C$ and $\triangle E C D$ we have $B D=D C$ (D is mid point of $B C$ as $A D$ is median) $<5=<6$ AD $=\mathrm{DE}$ construction $\triangle A B D \cong \triangle E C D \longrightarrow A B=E C$ (Cpct) (i) Similarily $\triangle P Q S \cong \triangle T R S$ $P Q=T R$ Since $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P S} \quad$ (ii) $\frac{E C}{T R}=\frac{A C}{P R}=\frac{2 A D}{2 P S}$ $\frac{E C}{T R}=\frac{A C}{P R}=\frac{A E}{P T} \quad \triangle \mathrm{AEC} \sim \triangle \mathrm{PTR} \quad<1=<2$ (Corresponding angle of similar Δ are equal) Similarily $<3=<4$ $\begin{aligned} & <1+<3=<2+<4 \\ & \angle A=<P \end{aligned}$ Now in $\triangle A B C$ and $\triangle P Q R$ $\begin{aligned} & \frac{A B}{P Q}=\frac{A C}{P R} \\ & \angle \mathrm{~A}=\angle \mathrm{P} \\ & \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}(\mathrm{SAS}) \end{aligned}$	4
Ans28	In $\triangle S B M C$ and $D M E$ $<1=2$ alternate is as BCII DE CM = DM $\therefore \mathrm{M}$ is mid point of DC) $<3=<4$ (V.O.A) $\triangle B M C \cong \triangle E M B A S A$ $B C=E D$ $B C=A D$ $2 B C=D E+A D=A E$ $\frac{B C}{A E}=\frac{1}{2}$ Now in $\triangle \mathrm{BCL}$ and $\triangle \mathrm{EAL}$	4

	$<5=<6$ alernate $<7=<8$ $\Delta B C L \sim \Delta E A L$ $\frac{B C}{E A}=\frac{B L}{E L}$ $\frac{1}{2}=\frac{B L}{E L} \rightarrow E L=2 B L$

CLASS 10SUBJECT: Mathematics CHAPTER-7 Coordinate Geometry

Ans1	$\begin{aligned} & (\mathrm{K}, 2 \mathrm{~K})(3 \mathrm{~K}, 3 \mathrm{~K})(3,1) \\ & \mathrm{K}(3 \mathrm{k}-1)+3 \mathrm{~K}(1-2 \mathrm{~K})+3(2 \mathrm{~K}-3 \mathrm{~K})=0 \\ & \text { On solving } \\ & \mathrm{K}=-1 / 3 \end{aligned}$	1
Ans2	-1	1
Ans3	0	1
Ans4	C	1
Ans5	$\begin{aligned} & x=\frac{3+14}{3}=\frac{17}{3} \text { Ans: quadrant IV } \\ & y=\frac{4-12}{3}=\frac{-8}{3} \end{aligned}$	2
Ans6	(0,-1)	2
Ans7	$\begin{aligned} & \frac{a}{3}=\frac{-2-6}{2} \\ & a=-12 \end{aligned}$	2
Ans8	$\begin{aligned} & \hline(8,1)(\mathrm{k},-4)(2,-5) \\ & 8(-4+5)+\mathrm{k}(-5-1)+2(1+4)=0 \\ & 8-6 \mathrm{k}+10=0 \\ & \mathrm{~K}=3 \\ & \hline \end{aligned}$	2
Ans9	Let ratio be k: 1 $\begin{gathered} \frac{-2}{7}=\frac{2 k-2}{k+1} \\ -2 \mathrm{k}-2=14 \mathrm{k}-14 \\ 12=16 \mathrm{k} \\ \mathrm{k}=3: 4 \end{gathered}$	2
Ans10	$x=\frac{1-2}{1+2}=\frac{-1}{3} \text { Point }(-1 / 3,0)$	2
Ans11	Let $\mathrm{A}=(1,2), \mathrm{B}=(1,0), \mathrm{C}=(4,0), \mathrm{D}=(\mathrm{a}, \mathrm{b})$ M.P. of $\mathrm{AC}=\left(\frac{1+4}{2}, \frac{2+0}{2}\right)$ M.P. of $\mathrm{BD}=\left(\frac{a+1}{2}, \frac{b+0}{2}\right)$ \therefore on comparing $\mathrm{a}=5 ; \mathrm{b}=2$ Point D $(5,2)$	2
Ans12	Same as answer 12	2
Ans13	$\begin{aligned} & \text { Let ratio be } \mathrm{K}: 1 \\ & 0=\frac{3 k-2}{k+1}: \therefore \mathrm{K}=2 / 3 \\ & \text { Ratio }=2: 3 \end{aligned}$	
Ans14	$\begin{aligned} & \text { P --------------------------- } \\ & (x, 2 x) \quad \sqrt{10} \quad(2,3) \\ & \mathrm{PQ}=\sqrt{10} \\ & \sqrt{(x-2)^{7}+(2 x-3)^{2}}=\sqrt{10} \end{aligned}$ Squaring and solving $\begin{aligned} & 5 x^{2}-16 x+3=0 \\ & (5 x-1)(x-3)=0 \\ & x=1 / 5 ; x=3 \end{aligned}$	
Ans16	$\begin{aligned} & \mathrm{P}=(2,5) \mathrm{Q}=(\mathrm{x},-3) \mathrm{R}=(7,9) \\ & \mathrm{PQ}=\mathrm{QR} \\ & \sqrt{(x-2)^{2}+(-3-5)^{2}}=\sqrt{(7-x)^{2}+(9+3)^{2}} \end{aligned}$ Squaring both sides and solving ; $\begin{aligned} & 10 \mathrm{x}=49+144-4-64 \\ & 10 \mathrm{x}=125 \\ & \mathrm{x}=25 / 2 \end{aligned}$	
Ans17	Let point P is equidistant from $\mathrm{A}(3,2)$ and $\mathrm{B}(3,-2)$	

	$\begin{aligned} & \sqrt{(x-3)^{2}+(y-2)^{2}}=\sqrt{(x-2)^{2}+(y+3)^{2}} \\ & x^{2}+9-6 x+y^{2}+4-4 y=x^{2}+4-4 x+y^{2}+9+6 y \end{aligned}$ on simplifying $x+5 y=0$	
Ans18	A K P 1 B $(-3,5)$ $(2,-5 / 6)$ $(3,-2)$ By section F $\begin{aligned} & 2=\frac{3 k-3}{k+1} \\ & 5=k \\ & \mathrm{~K}=5 / 1: \text { Ratio is } 5: 1 \end{aligned}$	
Ans19	Area is zero: hence $\begin{aligned} & 1 / 2[2(\mathrm{k}-10)+5(10-4)+3(4-\mathrm{k})=15 \\ & 2 \mathrm{k}-10+30+12-3 \mathrm{k}=30 \\ & -\mathrm{k}=30-30+8 \\ & \mathrm{~K}=-8 \end{aligned}$	
Ans20	Let point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from $\mathrm{A}(3,2)$ and $\mathrm{B}(3,-2)$ implies $\mathrm{PA}=\mathrm{PB}$ $\begin{aligned} & \sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{(x-3)^{2}+(y-4)^{2}} \\ & x^{2}+9-6 x+y^{2}+36-12 y=x^{2}+9+6 x+y^{2}+16-8 y \\ & -12 x-4 y=25-45 \\ & -12 x-4 y=-20 \\ & 3 x+y=5 \end{aligned}$	
Ans21	Let ratio be K: 1 $-6=\frac{-8 k-3}{k+1}$ $6 \mathrm{k}+6=8 \mathrm{k}+3$ $\mathrm{K}=3 / 2$ Ratio $=3: 2$ $\mathrm{a}=\frac{9 k+1}{k+1} \quad \text { implies } \quad \mathrm{a}=\frac{\frac{27}{2}+1}{\frac{3}{2}+1}=\frac{29}{5}$	
Ans22	$\begin{aligned} & 1(7-1)-4(1-2)+\mathrm{k}(2-7)=0 \\ & 6+4-5 \mathrm{k}=0 \\ & \mathrm{~K}=2 \end{aligned}$	
Ans23	Let ratio be $\mathrm{K}: 1$ $(1,3)$ (x,y) $(2,7)$ $\begin{aligned} & \mathrm{x}=\frac{2 k+1}{K+1} \quad \mathrm{y}=\frac{7 k+3}{K+1} \\ & 3 \mathrm{x}+\mathrm{y}-9=0 \\ & 3\left(\frac{2 K+1}{K+1}\right)+\left(\frac{7 K+3}{K+1}\right)-9=0 \\ & 6 \mathrm{k}+3+7 \mathrm{~K}+3-9-9 \mathrm{k}=0 \\ & 4 \mathrm{k}=9-3-3 \\ & 4 \mathrm{k}=3 \\ & \mathrm{~K}=\frac{3}{4} \text { Ratio }=3: 4 \end{aligned}$	
Ans24	Similar to question no. 20	
Ans25		

	By MPF $\begin{aligned} & 0=\frac{a+0}{2}, 0=\frac{b-3}{2} \\ & \mathrm{a}=0 ; \mathrm{b}=3 \\ & \text { point } \mathrm{B}(0,3) \\ & \mathrm{BC}=6 \\ & \mathrm{AB}=6 \\ & \sqrt{(P-0)^{2}+(0-3)^{2}}=6 \\ & \mathrm{P}^{2}+9=36 \\ & \mathrm{P}=3 \sqrt{3} \end{aligned}$ Point: A $(3 \sqrt{3}, 0)$
Ans26	Area of $\triangle \mathrm{PQR}=1 / 2[0(1-3)+2(3+1)+0(-1-1)]$ $=1 / 2(-2+8)=3$ Area of $\triangle \mathrm{ABC}=4 \mathrm{x}$ area of PQR $=4 \times 3=12 \text { sq. units }$

Ans1	$\begin{aligned} & \frac{\tan A+\tan B}{\cot A+\cot B} \\ & =\underline{\tan A+\tan B} \\ & \perp+\perp \\ & \tan A \quad \tan B \\ & =\frac{\tan A}{(\tan B+\tan A) \tan A \tan B} \\ & =\tan A \tan B \end{aligned}$	1
Ans2	$\begin{aligned} & \frac{\tan \mathrm{A}+\operatorname{Sec} \mathrm{A}-1}{\tan \mathrm{~B}+\operatorname{Sec} \mathrm{A}+1} \\ & =\frac{\tan \mathrm{A}+\operatorname{Sec} \mathrm{A}-\left(\operatorname{Sec}^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)}{\operatorname{Tan} \mathrm{A}-\operatorname{Sec} \mathrm{A}+1} \\ & =\frac{(\operatorname{Sec} \mathrm{A}+\tan \mathrm{A})[1-\operatorname{Sec} \mathrm{A}+\tan \mathrm{A}]}{\tan \mathrm{A}-\operatorname{Sec} \mathrm{A}+1)} \\ & =\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\ & =\frac{1+\sin A}{\cos A} \end{aligned}$	1
Ans3		1
Ans4	$\begin{aligned} & (1+\cot \mathrm{A}-\operatorname{cosec} \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A}) \\ & 1+\tan \mathrm{A}+\sec \mathrm{A}+\cot \mathrm{A}+\cot \mathrm{A} \tan \mathrm{~A}+\cot \mathrm{A} \sec \mathrm{~A}-\operatorname{cosec} \mathrm{A}-\operatorname{cosec} \mathrm{A} \tan \mathrm{~A}-\operatorname{cosec} \mathrm{A} \sec \mathrm{~A} \\ & 1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}+\frac{\cos A}{\sin A}+1+\frac{\cos A}{\sin A} \times \frac{1}{\sin A}-\frac{1}{\sin A} \times \frac{\sin A}{\cos A}-\frac{1}{\sin A} \times \frac{1}{\cos A} \\ & 2+\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}-\frac{1}{\sin A \cos A} \\ & 2+\frac{\sin ^{2} A+\cos ^{2} A-1}{\sin A \cos A} \\ & =2+\frac{1-1}{\sin A \cos A} \\ & 2+0 \\ & =2 \end{aligned}$	1

Ans5	$\tan ^{2} \mathrm{~A}+\operatorname{Cot}^{2} \mathrm{~A}+2$ $\operatorname{Sec}^{2} \mathrm{~A}-1+\operatorname{cosec}^{2} \mathrm{~A}-1+2$ $\operatorname{Sec}^{2} A+\operatorname{cosec}^{2} A$ $\begin{aligned} & =\frac{1}{\cos ^{2} A}+\frac{1}{\sin ^{2} A} \\ & =\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} \cos ^{2} A} \\ & =\frac{1}{\sin ^{2} A \cos ^{2} A} \\ & =\operatorname{cosec}^{2} \mathrm{~A} \mathrm{Sec} \end{aligned}$	2
Ans6	$\begin{aligned} & \frac{(\operatorname{Sec} A-\tan A)^{2}+1}{\operatorname{cosec} A(\operatorname{Sec} A-\tan A)} \\ & \frac{\operatorname{Sec}^{2} A+\tan ^{2} A-2 \sec A \tan A+1}{\operatorname{cosec} A(\sec A-\tan A)} \\ & =\frac{2 \operatorname{Sec}^{2} A-2 \sec A \tan A}{\operatorname{cosec} A(\sec A-\tan A)} \\ & =\frac{2 \operatorname{Secec} A(\operatorname{Sec} A-\tan A)}{\operatorname{cosec} A(\sec A-\tan A)} \\ & =2 \tan A \end{aligned}$	
Ans7	$\frac{\sin A-\operatorname{Sin} B}{\operatorname{Cos} A+\cos B}+\frac{\cos A-\cos B}{\operatorname{Sin} A+\operatorname{Sin} B}$ $\frac{\sin ^{2}-\operatorname{Sin}^{2} B+\operatorname{Cos}^{2} A-\operatorname{Cos}^{2} B}{(\operatorname{Cos} A+\cos B)(\sin A+\operatorname{Sin} B)}$ $\frac{1-1}{(\cos A+\cos B)(\operatorname{Sin} A+\operatorname{Sin} B)}$ $=0$	
Ans8	$\begin{aligned} & (\operatorname{Cos} A+\operatorname{Sec} A)^{2}+(\operatorname{Sin} A+\operatorname{cosec} A)^{2} \\ & \operatorname{Cos}^{2} A+\operatorname{Sec}^{2} A+2 \operatorname{Sec} A \cos A+\operatorname{Sin}^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A \\ & 1+2+2+\operatorname{Sec}^{2} A+\operatorname{cosec} 2 A \\ & 5+\tan ^{2} A+1+\cot ^{2} A+1 \\ & 7+\tan ^{2} A+\cot ^{2} A \end{aligned}$	
Ans9	$\frac{\cot A}{\operatorname{cosec} A+1}+\frac{\operatorname{cosec} A+1}{\cot A}$ $\frac{\cot ^{2} A+\operatorname{cosec} c^{2} A+1+2 \operatorname{cosec} A}{\cot A(\operatorname{cosec} A+1)}$ $\frac{2 \operatorname{cosec}^{2} A+2 \operatorname{cosec} A}{\cot A(\operatorname{cosec} A+1)}$ $\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+1)}{\cot A(\operatorname{cosec} A+1)}$ $=2 \sec A$	
Ans10	$\begin{aligned} & (\operatorname{Sin} A+\operatorname{Sec} A)^{2}+(\operatorname{Cos} A+\operatorname{Cosec} A)^{2} \\ & \operatorname{Sin}^{2} A+\operatorname{Sec}^{2} A+2 \operatorname{Sin} A \operatorname{Sec} A+\operatorname{Cos}^{2} A+\operatorname{Cosec}^{2} A+2 \cos A \operatorname{cosec} A \\ & 1+\operatorname{Sec}^{2} A+2 \tan A+\operatorname{cosec}^{2} A+2 \cot A \\ & 1+\frac{1}{\cos ^{2} A}+\frac{1}{\sin ^{2} A}+\frac{2 \sin A}{\cos A}+\frac{2 \cos A}{\sin A} \\ & 1+\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A \cos ^{2} A}+\frac{2 \sin 2}{\sin A \cos A} \cos ^{2} A \\ & 1+\frac{1}{\sin ^{2} A \cos ^{2} A}+\frac{2}{\sin A \cos A} \\ & 1+(\operatorname{Sec} A \operatorname{cosec} A)^{2}+2 \sec A \operatorname{cosec} A \\ & (1+\operatorname{Sec} A \operatorname{cosec} A)^{2} \\ & \hline \end{aligned}$	
Ans11	$\begin{aligned} & \frac{\sin A}{1-\cos A}+\frac{\tan A}{1+\cos A} \\ & \frac{\sin A}{1-\cos A}+\frac{\sin A}{\cos A(1+\cos A)} \\ & \frac{\sin A \cos A(1+\cos A)+\sin A(1-\cos A)}{(1-\cos A)(1+\cos A) \cos A} \\ & \frac{\sin A \cos A+\sin A \cos ^{2} A+\sin A-\sin A \cos A}{(1-\cos A)(1+\cos A) \cos A} \\ & \frac{\sin A\left(1+\cos ^{2} A\right)}{\sin ^{2} A \cos A} \\ & \frac{1+\cos ^{2} A}{\sin A \cos A} \end{aligned}$	

	$\begin{aligned} & \frac{1}{\sin A \cos A}+\frac{\cos ^{2} A}{\sin A \cos A} \\ & \operatorname{Sec} A \operatorname{cosec} A+\cot A \end{aligned}$
Ans12	$\begin{aligned} & (\operatorname{cosec} A-\sin A)(\sec A-\cos A) \\ & \left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\ & \frac{1-\sin ^{2} A}{\sin ^{2} A} \times \frac{1-\cos ^{2} A}{\cos A} \\ & \frac{\cos ^{2} A}{\sin A} \times \frac{\sin ^{2} A}{\cos A} \\ & \operatorname{Sin} \mathrm{~A} \cos \mathrm{~A} \\ & \text { RHS : } \\ & \frac{1}{\tan A+\cot A} \\ & \frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}} \\ & =\frac{\sin ^{2} A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin \mathrm{A} \cos \mathrm{~A} \\ & \hline \end{aligned}$

Ans13	$\begin{aligned} & \frac{\cot 58}{\tan 32}+\frac{\cos 59}{\sin 31}+\sin ^{2} 50+\sin ^{2} 40-8 \sin ^{2} 30 \\ & \frac{\cot (90-32)}{\tan 32}+\frac{\cos (90-31)}{\sin 31}+\sin ^{2}(90-40)+\sin ^{2} 40-8 \times(1 / 2)^{2} \\ & \frac{\tan 32}{\tan 32}+\frac{\sin 31}{\sin 31}+\cos ^{2} 40+\sin ^{2} 40-2 \\ & =1+1+1-2 \\ & =1 \end{aligned}$
Ans14	$\begin{aligned} & \operatorname{Sec}^{2} 32-\cot ^{2} 58+\frac{\cot 15}{\tan 75}-\frac{\cos 27}{\sin 63}+2 \sin ^{2} 45 \\ & \operatorname{Sec}^{2}(90-58)-\cot ^{2} 58+\frac{\cot (90-75)}{\tan 75}-\frac{\cos (90-63)}{\sin 63}+2 \times(1 / \sqrt{2})^{2} \\ & \operatorname{Cosec}^{2} 58-\cot ^{2} 58+\frac{\tan 75}{\tan 75}-\frac{\sin 63}{\sin 63}+1 \\ & =1+1-1+1 \\ & =2 \end{aligned}$
Ans15	$\begin{aligned} & \frac{\sin 40}{\cos 50}+\frac{\sec ^{2} 35}{\operatorname{cosec}^{2} 55}+\tan 20 \tan 40 \tan 45 \tan 50 \tan 70 \\ & \frac{\sin (90-50)}{\cos 50}+\frac{\sec ^{2}(90-55)}{\operatorname{cosec}^{2} 55}+\tan (90-70) \tan (90-50) .1 . \tan 50 \tan 70 \\ & \frac{\cos ^{50} 5}{\cos 50}+\frac{\operatorname{cosec}^{2} 55}{\operatorname{cosec}^{2} 55}+\cot 70 \cot 50 \tan 50 \tan 70 \\ & 1+1+1 \\ & =3 \\ & \hline \end{aligned}$
Ans16	$\begin{aligned} & \operatorname{Sin}^{2} 65+\operatorname{Sin}^{2} 22+\tan 10 \tan 25 \tan 60 \tan 65 \tan 80+\frac{\sin 70}{\cos 20}+\frac{\sec ^{2} 65}{\operatorname{cosec}^{2} 25} \\ & \operatorname{Sin}^{2}(90-22)+\sin ^{2} 22++\tan (90-80) \tan (90-65) \sqrt{3} \tan 65 \tan 80+\frac{\sin (90-20)}{\cos 20}+\frac{\sec ^{2}(90-25)}{\operatorname{cosec}^{2} 25} \\ & \operatorname{Cos}^{2} 22+\sin ^{2} 22+\cot 80 \cot 65 . \sqrt{3} . \operatorname{Tan} 65 \tan 80+\frac{\cos 20}{\cos 20}+\frac{\operatorname{cosec}^{2} 25}{\operatorname{cosec}^{2} 25} \\ & =1+\sqrt{3}+1+1 \\ & =3+\sqrt{3} \end{aligned}$
Ans17	a) $\begin{aligned} & \operatorname{Cos}(20+x)=\sin 60 \\ & \operatorname{Cos}(20+x)=\cos 30 \\ & 20+x=30 \\ & x=10 \end{aligned}$ b) $\begin{aligned} & 2 \sin (3 x-15)=\sqrt{3} \\ & \operatorname{Sin}(3 x-15)=\frac{\sqrt{3}}{2} \\ & \operatorname{Sin}(3 x-15)=\sin 60 \\ & 3 x-15=60 \\ & x=25 \\ & \tan ^{2}(25+5)+\sin ^{2}(2 \times 25+10) \end{aligned}$

	$\begin{aligned} & \tan ^{2} 30+\sin ^{2} 60 \\ & =3+3 / 4 \\ & =15 / 4 \end{aligned}$	
Ans18	$\begin{aligned} & m+n=2 \tan A \\ & m-n=2 \sin A \\ & (m+n)(m-n)=2 \tan A 2 \sin A \\ & m^{2}-n^{2}=4 \tan A \sin A \\ & 4 \sqrt{m n} \\ & =4 \sqrt{(\sin A+\tan A)(\tan A-\sin A)} \\ & 4 \sqrt{\tan ^{2} A-\sin ^{2} A} \\ & 4 \sqrt{\frac{\sin ^{2} A}{\cos ^{2} A}-\sin ^{2} A} \\ & 4 \sqrt{\sin ^{2} A\left(\frac{1}{\cos ^{2} A}-1\right)} \\ & 4 \sqrt{\sin ^{2} A\left(\frac{1-\cos ^{2} A}{\cos ^{2} A}\right)} \\ & 4 \sqrt{\frac{\sin ^{4} A}{\cos ^{2} A}} \\ & =4 \frac{\sin ^{2} A}{\cos ^{2} A} \\ & =4 \tan ^{2} \sin A \end{aligned}$	
Ans19	$\text { a) } \begin{aligned} & 3 \cos ^{2} A+7 \sin ^{2} A=4 \\ & 3 \cos ^{2} A+3 \sin ^{2} A+4 \sin ^{2} A=4 \\ & 3\left(\cos ^{2} A+\sin ^{2} A\right)=4-4 \sin ^{2} A \\ & 3=4\left(1-\sin ^{2} A\right) \\ & 3 / 4=\cos ^{2} A \\ & \cos A=\frac{\sqrt{3}}{2} \\ & \tan A=\sqrt{3} \\ & \text { b) }(\cos A+\sin A)^{2}=(\sqrt{2} \cos A)^{2} \\ & \cos ^{2} A+\sin ^{2} A+2 \sin A \cos A=2 \cos ^{2} A \\ & 1+2 \sin A \cos A=2 \cos ^{2} A \\ & 2 \sin A \cos A=2 \cos ^{2} A-1 \\ & \text { Now, }(\cos A-\sin A)^{2}=\cos ^{2} A+\sin ^{2} A-2 \sin A \cos A \\ & (\cos A-\sin A)^{2}=1-2 \sin A \cos ^{2} A \\ & (\cos A-\sin A)^{2}=1-2 \cos ^{2} A+1 \\ & (\cos A-\sin A)^{2}=2-2 \cos ^{2} A \\ & (\cos A-\sin A)^{2}=2\left(1-\cos ^{2} A\right) \\ & (\cos A-\sin A)^{2}=2 \sin ^{2} A \\ & (\cos A-\sin A)=\sqrt{2} \sin A \end{aligned}$	
Ans20	$\begin{aligned} & X^{2}+y^{2}+z^{2} \\ & =r^{2} \sin ^{2} A \cos ^{2} B+r^{2} \sin ^{2} A \sin ^{2} B+r^{2} \cos ^{2} A \\ & ==^{2} \sin ^{2} A\left(\cos ^{2} B+\sin ^{2} B\right)+r^{2} \cos ^{2} A \\ & =r^{2} \sin ^{2} A+r^{2} \cos ^{2} A \\ & =r^{2}\left(\sin ^{2} A+\cos ^{2} A\right) \\ & =r^{2} \end{aligned}$	
Ans21	$\begin{aligned} & \text { Tan } 45=\frac{h}{x} \\ & \mathrm{~h}=\mathrm{x} \\ & \tan 30=\frac{h}{10+x} \\ & \frac{1}{\sqrt{3}}=\frac{h}{10+h} \\ & 10+\mathrm{h}=\sqrt{3} \mathrm{~h} \\ & 10=\sqrt{3} \mathrm{~h}-\mathrm{h} \\ & 10=(\sqrt{3}-1) \mathrm{h} \end{aligned}$	

	$\begin{aligned} & \mathrm{h}=\frac{10}{\sqrt{3-1}} \\ & \mathrm{~h}=\frac{10}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\ & \mathrm{~h}=\frac{10(\sqrt{3}+1}{3-1} \\ & \mathrm{~h}=\frac{10(1.73+1)}{2} \\ & \mathrm{~h}=\frac{27.3}{2}=13.65 \mathrm{~m} \end{aligned}$	
Ans22	Let the speed be $x \mathrm{~km} / \mathrm{hrs}$ $\begin{aligned} & \mathrm{y}=\frac{15 x}{60 \times 60} \mathrm{~km} \\ & \tan 45=3000 / 2 \\ & \mathrm{z}=3000 \mathrm{~m}=3 \mathrm{~km} \\ & \tan 30=\frac{3}{y+z} \\ & \frac{1}{\sqrt{3}}=\frac{3}{y+3} \\ & \mathrm{y}+3=3 \sqrt{3} \\ & \mathrm{y}=3 \sqrt{3}-3 \\ & \frac{15 x}{60 x 60}=3 \sqrt{3}-3 \\ & \mathrm{x}=\frac{3(\sqrt{3}-1) \times 60 \times 60}{15} \\ & \mathrm{x}=\frac{3600}{5}(1.73-1) \\ & \mathrm{x}=720 \times 0.73 \\ & \mathrm{x}=525.6 \mathrm{~km} / \mathrm{hr} \end{aligned}$	
Ans23	$\begin{aligned} & \tan 60=\frac{90}{x} \\ & \sqrt{3}=\frac{90}{x} \\ & \mathrm{x}=\frac{90}{\sqrt{3}} \\ & \tan 30=\frac{90-h}{x} \\ & \frac{1}{\sqrt{3}}=\frac{90-h}{90 / \sqrt{3}} \\ & 90=3(90-\mathrm{h}) \\ & 60=90-\mathrm{h} \\ & \mathrm{~h}=30 \mathrm{~m} \end{aligned}$	
Ans24	$\begin{aligned} & \tan 60=\frac{h}{x} \\ & \mathrm{x}=\frac{h}{\sqrt{3}} \\ & \tan 30=\frac{h-45}{x} \\ & \frac{1}{\sqrt{3}}=\frac{h-45}{h / \sqrt{3}} \\ & \mathrm{~h}=3(\mathrm{~h}-45) \\ & \mathrm{h}=3 \mathrm{~h}-135 \\ & \mathrm{~h}=\frac{135}{2}=67.5 \mathrm{~m} . \end{aligned}$	
Ans25	$\tan 60=\frac{h}{x}$ $h=x \sqrt{3}$ $\tan 30=\frac{h}{x+50}$ $\frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{x+50}$ $x+50=3 x$ (i) $\mathrm{x}=25 \mathrm{~m}$ (ii) $\mathrm{h}=25 \sqrt{3} \mathrm{~m}$	

Ans26	$\begin{array}{llll} \tan 60=\frac{88.2}{x} \\ \sqrt{3}=\frac{88.2}{x} \\ x=\frac{88.2}{\sqrt{3}} & & \\ \tan 30=\frac{88.2}{x+y} \\ \frac{1}{\sqrt{3}}=\frac{88.2}{88.2} \\ \frac{1}{85}+y \\ \frac{1}{\sqrt{3}}=\frac{88.2 \sqrt{3}}{88.2+\sqrt{3} y} \\ \sqrt{3} y+88.2=88.2 \times 3 \\ \sqrt{3} y=264.6-88.2 \\ y=\frac{176.4}{\sqrt{3}} \\ y=\frac{176.4 x \sqrt{3}}{3} \\ y=58.8 \sqrt{3} \mathrm{~m} \\ \hline \end{array}$
Ans27	$\begin{aligned} & \tan 45=\frac{h}{x} \\ & \mathrm{x}=\mathrm{h} \\ & \tan 30=\frac{h-100}{x} \\ & \frac{1}{\sqrt{3}}=\frac{h-100}{h} \\ & h=\sqrt{3} h-100 \sqrt{3} \\ & 100 \sqrt{3}=\sqrt{3} h-h \\ & \frac{100 \sqrt{3}}{\sqrt{3}-1}=h \\ & h=\frac{100 \sqrt{3}(\sqrt{3}+1)}{3-1}=\frac{100(3+\sqrt{3})}{2}=50(3+\sqrt{3}) \mathrm{m} \\ & x=h=50(3+\sqrt{3}) m \end{aligned}$
Ans28	$\begin{aligned} & \tan 45=\frac{h}{x} \\ & \mathrm{x}=\mathrm{h} \\ & \tan 30=\frac{h-100}{x} \\ & \frac{1}{\sqrt{3}}=\frac{h-100}{h} \\ & h=\sqrt{3} h-100 \sqrt{3} \\ & 100 \sqrt{3}=\sqrt{3} h-h \\ & \frac{100 \sqrt{3}}{\sqrt{3}-1}=h \\ & h=\frac{100 \sqrt{3}(\sqrt{3}+1)}{3-1}=\frac{100(3+\sqrt{3})}{2}=50(3+\sqrt{3}) \mathrm{m} \\ & x=h=50(3+\sqrt{3}) m \end{aligned}$
Ans29	$\begin{aligned} & \tan \theta=\frac{h}{a} \\ & \tan (90-\theta)=\frac{h}{b} \\ & \cot \theta=\frac{h}{b} \\ & \tan \theta=\frac{b}{h} \\ & =\frac{b}{h}=\frac{h}{a} \\ & =h^{2}=a b \\ & \mathrm{H}=\sqrt{a b} \end{aligned}$
Ans30	$\begin{aligned} & \tan 60=\frac{h}{x} \\ & x \sqrt{3}=\mathrm{h} \\ & \tan 30=\frac{h}{150-x} \\ & \frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{150-x} \\ & 150-x=3 x \end{aligned}$

	$150=4 \mathrm{x}$ $\mathrm{x}=37.5 \mathrm{~m}$ $\mathrm{~h}=37.5 \sqrt{3} \mathrm{~m}$	

THE ASIAN SCHOOL, DEHRADUN

Test Paper Session 2017-18
CLASS 10
SUBJECT Mathematics
CHAPTER- 10 Circles

Ans1.	$\begin{aligned} & r=\sqrt{39^{2}-36^{2}}=\sqrt{75 x 3} \\ & r=15 \mathrm{~cm} . \end{aligned}$	1
Ans2		1
Ans3	$\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$ by Pythagoras theorem $\mathrm{AC}=10 \mathrm{~cm}$ area of $\triangle A B C=1 / 2 A B \times B C=1 / 28 \times 6=24 \mathrm{~cm}^{2}$ also area of $\triangle A B C=\frac{1}{2} \times B C x r+\frac{1}{2} A C x r+\frac{1}{2} A B x r$ $\begin{aligned} & 24=\frac{1}{2} r[6+10+8] \\ & 48=24 r \\ & r=2 \mathrm{~cm} \end{aligned}$	1

Ans4	$A B=A C$ $\mathrm{PB}=\mathrm{PR} \quad$ Tangents from external point $\mathrm{QR}=\mathrm{QC}$ Perimeter of $\triangle \mathrm{APQ}$ $\begin{aligned} & =A P+P Q+A Q \\ & =A P+P R+R Q+A Q \\ & =A P+P B+Q C+A Q \end{aligned}$ Perimeter of $\triangle A P Q=A B+A C=10 \mathrm{~cm}$	1
Ans5	Given : $A B$ is a chord of bigger circle centre 0 . To prove $A P=P B$ Join OA ,OB and OP Proof : $A B$ is \perp to $O P$ as radius is \perp to tangent at point of contact In $\triangle O A P$ and $\triangle O A B$ $O A=O B=$ radius of bigger circle $\measuredangle O P B=\angle O P A$ each 90° OP =OP common $\triangle \mathrm{OPB} \cong \triangle O P A R H S$ $\mathrm{AP}=\mathrm{PB}$ (Cpct)	2
Ans6	Given Two tanget $A P$ and $A B, O$ is centre To prove $A P=A B$ Proof : \triangle OPA and $\triangle O B A$ $\mathrm{OP}=\mathrm{OB}=$ radius of circle $\measuredangle \mathrm{OPA}=\angle \mathrm{OBA}-$ tangent is perpendicular to radius at point of contact $O A=O A$ common \triangle OPA $\cong \triangle O B A R H S \quad A P=A B($ Cpct $)$	2
Ans7	$\angle 0+\angle Q+\angle R+x=360^{\circ}$ OQPR is quadrilateral so, $140+x=180$ $\left[\therefore \angle Q=\angle R=90^{\circ}\right.$ Tangent makes 90° with radius at point of contact] $x=180-140=40$	2

Ans8.	$r=3 \mathrm{~cm}, \mathrm{R}=5 \mathrm{~cm}$ In \triangle OPL OL $=5 \mathrm{~cm}$ $\mathrm{OP}=3 \mathrm{~cm}$ $\begin{aligned} & L P=\sqrt{O L^{2}-O P^{2}}=5^{2}-3^{2}=\sqrt{16} \\ & L P=4 \end{aligned}$ Length of chord $=2 \times 4=8 \mathrm{~cm}$.	2
Ans9	Let $A B$ be the diameter of circle $<\mathrm{OAP}=<\mathrm{OBQ}=90$ Radius is \perp to tangent at point of contact. $\angle \mathrm{OAP}+\angle \mathrm{OBQ}=180$ Which prove cointerior angles are supplementary $\rightarrow \mathrm{AP}$ II BQ	2
Ans10	Given AB is a chord AOC is a diameter To Prove : $<$ BAT = $<\mathrm{ACB}$ Proof : AOC is diameter $\begin{aligned} & \rightarrow \angle A B C=90^{\circ} \\ & \text { Let } \angle B A T=1, \angle B A C=90-<1 \\ & \therefore \operatorname{In} \triangle A B C \\ & \angle A C B+\angle C A B+\angle C B A=180 \\ & \angle A C B+90-<1+90=180 \end{aligned}$ $<\mathrm{ACB}=<1=<\text { BAT Hence prove. }$	2
Ans11		2

Ans14	Given : A parallelogram say ABCD. Let the parallelogram touch the circle at the point P,Q R, and $S, A s A P$ and $A S$ are tangents to the circle drawn from an external point A. $\begin{aligned} & A P=A S, B P=B Q \\ & C R=C Q, D R=D S \end{aligned}$ adding all we get $\begin{aligned} & (A P+B P)+(C R+D R)=A S+B Q+C Q+D S \\ & \\ & A B+C D=A D+B C \\ & A B+D S+B Q+C Q \\ & \therefore C D=A B, B C=A D \end{aligned}$ Opposite sides of Parallelogram $\begin{aligned} & 2 A B=2 A D \\ & A B=A D \end{aligned}$ $A B C D$ is a rhumbus	3
Ans15	In right $\triangle 0$ AT, $\begin{aligned} & \operatorname{Cos} 30=\frac{A T}{0 T} \\ & \frac{\sqrt{3}}{2}=\frac{A T}{04} \\ & \text { AT }=2 \sqrt{3} \mathrm{~cm} \end{aligned}$	3
Ans16	Given :Two tangents PT and PT' To prove $<$ TPT' $=2<0 T^{\prime}$ Proof $\angle O T P=\angle O T T^{\prime} P=90$ Radius is \perp to tangent $<\text { TOT }+<\mathrm{TPT}^{\prime}=180$ < TOT'= $180-<$ TPT' $\Delta \mathrm{OTT}^{\prime}, \quad \mathrm{OT}=\mathrm{OT}^{\prime}$ radius $<$ OTT $^{\prime}=<$ OT'T \quad angle opposite to equal sides of Δ. $\Delta 0 \Pi^{\prime}$	3

	$\begin{aligned} & <\mathrm{TOT}^{\prime}+<0 \mathrm{~T}^{\prime}+\angle 0 \mathrm{~T}^{\prime} \mathrm{T}=180 \text { (ASP) } \\ & 180-<T \mathrm{~T}^{\prime}+2<0 \mathrm{~T}^{\prime}=180 \\ & <\mathrm{TPT}^{\prime}=2<0 T^{\prime} \text { Proved } \end{aligned}$	
Ans17	Given two tangents PA and PB are drawn. To prove : $O P$ is perpendicular bisector of $A B$ i.e. $A Q=Q B$ and $A Q O=\angle A Q P=90^{\circ}$ Proof: $\begin{aligned} & \angle Q P A=\angle Q P B \\ & \therefore \triangle O A P \cong \triangle O B P \\ & \angle Q P A=\angle Q B P \\ & \therefore A P=B P \\ & Q P=Q P \text { common } \\ & \triangle P Q A \cong \triangle P Q B \text { AAS } \\ & Q A=Q B \rightarrow O P \text { bsects } A B \\ & \triangle O Q A \cong \triangle O Q B \text { (SAS) } \\ & \therefore O A=O B=\text { radius } \\ & A Q=Q B \text { proved } \\ & \angle O A B=\angle O B A \\ & \therefore O B=O A \\ & =\angle O Q A=\angle O Q B \\ & B u t \angle O Q A+\angle O Q B=180 \\ & 2 \angle O Q A=180 \\ & \text { i.e. } \angle O Q A=90 \\ & \angle O Q A=\angle O Q B=90^{\circ} \text { hence proved. } \\ & O P \text { is } \perp \text { bisector of } A B . \end{aligned}$	3
Ans18	Given PT and PT' are two tangents To prove : <TPT' $+<$ TOT' $=180$ Proof : OT' PT os a quadrilateral $\angle O T P+\angle O T \prime P+\angle T P T^{\prime}+\angle T T^{\prime} O=360$ $\angle O T P=\angle O T^{\prime} P=90^{\circ}$ Radius is \perp to tangent. $90+90+<T T^{\prime}+<$ TOT' $^{\prime}=360$ <TPT' + < TOT' $^{\prime}=180$	3
Ans19	Given $\mathrm{OP}=13 \mathrm{~cm} \mathrm{AB}=7 \mathrm{~cm} \mathrm{BP}=9 \mathrm{~cm}$ To find radius of circle.	3

| | |
| :--- | :--- | :--- | :--- | :--- |

	$\begin{array}{\|cl} \therefore \mathrm{AB} \\| \mathrm{CD} & <\mathrm{PSC}+\triangle \mathrm{QTC}=180 \\ & 2<\mathrm{OSC}+2<0 \mathrm{TC}=180 \\ & <\mathrm{OSC}+\angle \mathrm{OTC}=90 \\ \text { In } \Delta \mathrm{SOT} & <\text { SOT }+\angle O S C+\angle O T C=180 \\ \text { So } \Delta & <\text { SOT }=90^{\circ} \end{array}$	
Ans22	Given $A B$ is a $A H B x$ are perpendicular from A and B to tangent. To Prove $A H+B X=A B$ Proof let $A H=x, B k=y$ and $B M=z$ $\triangle \mathrm{MBK} \sim \triangle \mathrm{MAH}(\mathrm{AA})$ $\begin{aligned} & \frac{B K}{A H}=\frac{B M}{A M} \\ & \frac{y}{x}=\frac{Z}{z+2 r}=\mathrm{z}(\mathrm{x}-\mathrm{y})=2 \mathrm{ry} \end{aligned}$ $\begin{equation*} \mathrm{Z}=\frac{2 r y}{x-y} \tag{1} \end{equation*}$ Similarly Δ $M B K \sim \triangle M O P(A A)$ $\frac{B K}{O P}=\frac{B M}{O M}$ $\begin{align*} & \frac{y}{r}=\frac{z}{z+r}=\mathrm{z}(r-\mathrm{y})=\mathrm{yr} \\ & \mathrm{z}=\frac{y r}{r-y} \tag{2} \end{align*}$ From 1 and 2 $\begin{aligned} & \frac{2 r y}{x-y}=\frac{y r}{r-y} \\ & 2 r-2 y=x-y \\ & X+y=2 r \\ & A H+B k=A B \end{aligned}$	4
Ans23	Given : $\triangle A B C, A B=A C$ To prove: $B P=P C$ Proof Join OB and OC	4


	```In \(\triangle\) OBP and \(\triangle O C P\) \(O B=O C=\) radius of circle \(\measuredangle \mathrm{PBB}=\angle O \mathrm{PC}=90 \quad\) (radius is \(\perp\) to tangent) OP =OP common \(\triangle\) OPB \(\cong \triangle O P C\) RHS \(\mathrm{PB}=\mathrm{PC}\) Hence proved```	
Ans24	Given: OP is equal to diameter of circle To prove $\triangle A B P$ is an equilateral $\Delta$   Proof Let $\measuredangle \mathrm{OPA}=\measuredangle \mathrm{P} \mathrm{PB}=\mathrm{Q}$ tangents are equally inclined.   Let radius of the circle be $r$   $<1=90^{\circ}$ radius through point of contant is $\perp$ to tangent.   In right $\triangle \mathrm{OAP} \sin Q=\frac{O A}{O P}=\frac{r}{2 r}=\frac{1}{2}=\sin 30^{\circ}$ $Q=30$ $\angle A P B=20=60$   Since PA $=$ PB length of tangent from external point $<2=<3$   $\triangle$ APB $\begin{gathered} <2+3+\angle \mathrm{APB}=180 \\ \angle 2+\angle 2+60=180 \\ 2<2=120^{\circ} \\ \angle 2=\angle 3=60^{\circ} \end{gathered}$   So all angles of $\triangle A P B$ are $60^{\circ} \triangle A P B$ is an equilateral $\Delta$.	4
Ans25	Given: $C D$ is a at contact point $C$ AOB to diamet or which meets tangents produced at $D$.   Chord $A C$ makes $\angle A=30^{\circ}$ with $A B$   To prove : BD = BC   Proof : $\triangle \mathrm{OAC}, \mathrm{OA}=\mathrm{OC}=\mathrm{r}$ radii   $<1=<$ A angle opposite to equal sides   $<1=30^{\circ}$   $\angle B O C=\angle 2=\angle 1+\angle A=30+30=60^{\circ}$   $\triangle O C B \quad O B=O C$ radii   $<3=<4$   $\angle 3+\angle 4+\angle C O B=180^{\circ}$   $<3+\angle 3+60=180$   $2<3=120^{\circ}$   $<3=60^{\circ}=<4$   $<6+<4=180^{\circ}$ Linear pair   $<6=180-<4$   $=180-60=120$   $\measuredangle O C D=90^{\circ}$   $<3+<5=90$   $<5=90-<3=90-60=30^{\circ}$   $\triangle B C D<5+\angle 6+\angle D=180^{\circ}$   $120+30+\measuredangle \mathrm{D}=180$   $\angle C=\angle D=30^{\circ}$   $B C=B D$ sides opposite to equal angles.	4


| Ans26 |  |
| :--- | :--- | :--- |
|  |  |
|  |  |
|  |  |


Ans28	Construction: Draw $\mathrm{OI} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$   In $\triangle \mathrm{EOL}$ and $\triangle \mathrm{EOM}$   $\angle O L E=<O M E$ each 90 $\mathrm{OL}=\mathrm{OM}$   Equal chords are equidestant from centre $O L E=O E$   $\triangle \mathrm{OIF} \cong \triangle \mathrm{OME}$ RHS   $\mathrm{EL}=\mathrm{EM}$ (Cpct) $\begin{aligned} & \therefore A B=C D=\frac{1}{2} A B=\frac{1}{2} C D=B L=D M \\ & E B+B L=E D+D M \\ & =E B=E D \end{aligned}$	4

CLASS 10
SUBJECT Mathematics
CHAPTER-12 Area Related to Circles

Ans1	$\begin{aligned} & \pi \mathrm{r}+2 \mathrm{r}=36 \\ & \mathrm{r}=\frac{36}{\pi+2}=7 \\ & \mathrm{~d}=14 \mathrm{~cm} \end{aligned}$		1
Ans2	$\begin{aligned} & \text { Area }=81 \\ & \mathrm{a}^{2}=81 \\ & \mathrm{a}=9 \\ & \mathrm{P}=36 \mathrm{~cm} \\ & \pi \mathrm{r}+2 \mathrm{r}=36 \\ & \mathrm{r}=7 \\ & \text { Area }=1 / 2 \pi \mathrm{r}^{2} \\ & =1 / 2 \mathrm{x} \frac{22}{7}=77 \mathrm{~cm}^{2} \end{aligned}$		1
Ans3	$\mathrm{r}=21 \mathrm{~cm}$ Ans=21 $\mathrm{u}^{\text {units }}$		
Ans4	$\begin{aligned} & 2 \pi \mathrm{r}=49 \\ & \mathrm{r}=2 \mathrm{a} / \pi \\ & \text { ratio of areas }=\pi \mathrm{r}^{2} / \mathrm{a}^{2} \\ & =\pi\left(4 / \pi^{2}\right)=4 / \pi \end{aligned}$		
Ans5	$2 \pi \mathrm{r}=100 \quad \mathrm{r}=\frac{100}{\pi} \mathrm{~d}=\frac{200}{\pi}$   Let side of square is a. $\begin{aligned} & \mathrm{a}^{2}+\mathrm{a}^{2}=\left(\frac{200}{\pi}\right)^{2} \\ & 2 \mathrm{a}^{2}=\frac{40000}{\pi^{2}} \\ & \mathrm{a}^{2}=\frac{20000}{\pi^{2}} \end{aligned}$ $a=\frac{100 \sqrt{2}}{\pi}$		
Ans6	$\begin{aligned} & \mathrm{r}=14 \mathrm{~cm} ; 1 \mathrm{~min}=6^{\circ} \\ & 15 \mathrm{~min}=90^{\circ} \\ & \text { Area }=\frac{\theta}{360} \times \pi \mathrm{r}^{2} \\ & =\frac{90}{360} \pi 14 \times 14=49 \pi \mathrm{~cm}^{2} \end{aligned}$		
Ans7	$\begin{aligned} & \pi r+2 r=66 \\ & r=\frac{66}{\pi+2} \end{aligned}$		
Ans8	$\begin{aligned} & a=\text { side of square } \\ & r=\text { radius } \\ & a^{2}=\pi r^{2} \\ & \frac{a}{r}=\sqrt{r} \end{aligned}$   Ratio of perimeter $\begin{aligned} & =\frac{4 a}{2 \pi r}=\frac{2}{\pi} \sqrt{\pi} \\ & =\frac{2}{\sqrt{\pi}} \end{aligned}$		
Ans9	$\begin{aligned} & 1 \mathrm{~min}=6^{0} \\ & 35 \mathrm{~min}=210^{0} \\ & \text { Area }=\frac{\theta}{360} \times \pi r^{1} \\ & =\frac{210}{360} \times \pi \times 14 \times 14=\frac{343}{3} \times \frac{22}{7}=\frac{1078}{3} \mathrm{cn}^{2} \end{aligned}$		
Ans10	Similar to answer 9		


Ans11	$\begin{aligned} & \pi r^{2}=2 \pi r \\ & r=2 \end{aligned}$	
Ans12	If we fold the semicircle then the slant height will be 14 cm , let radius of cone be $R$, and height be $h$. $\begin{aligned} & d=28 ; r=14 \\ & \pi r=R(2 \pi) \\ & R=7 \mathrm{~cm} \\ & H^{2}=14^{2}-7^{2}=147 \\ & H=7 \sqrt{3} \mathrm{~cm} \\ & \text { Volume }=\pi r^{2} \mathrm{~h}=\frac{22}{7} \times 49 \times 7 \mathrm{v} 3 \\ & =1078 \sqrt{3} \mathrm{~cm}^{3} \end{aligned}$	
Ans13	$\begin{aligned} & 2 \pi r=22 \\ & r=\frac{11}{\pi}=11 \times \frac{7}{22}=\frac{7}{2} \end{aligned}$   Area of quadrant $=\frac{1}{4} \pi \mathrm{r}^{2}$ $=\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{8} \mathrm{~cm}$	
Ans14	$r=12 \mathrm{~cm} \quad \theta=120^{\circ}$   Area of minor segment $\begin{aligned} & =\frac{120}{360} \times 3.14 \times 12^{2}-\frac{1}{2} \times 12^{2} \times \frac{3}{2} \\ & =12^{2}\left(\frac{3.14}{3}-\frac{1.73}{4}\right) \\ & =144\left(\frac{12.56-5.19}{12}\right) \\ & =144 \times \frac{7.37}{12}=88.44 \mathrm{~cm}^{2} \end{aligned}$	
Ans15	If $w e$ assume a square shaped filed, Increase in area: $\begin{aligned} & =\frac{90}{360} \times \pi 23^{2}-\frac{90}{360} \times \pi 16^{2} \\ & =\frac{1}{4} \pi(529-256) \\ & =2 \frac{273}{4} \times \frac{22}{7}=\frac{6006}{28} \mathrm{~cm}^{2} \end{aligned}$	
Ans16	Let radius of circle is $r$ and side of square is 12 cm .   Area of remaining part :   Area of $\Delta$ - Area of circle $\begin{aligned} & \sqrt{\frac{3}{4}} \operatorname{side}^{2}=3\left(\frac{1}{2} \times 12 X r\right) \\ & \sqrt{\frac{3}{4}} \times 12^{2}=18 \mathrm{r} \\ & r=2 \sqrt{3} \\ & \therefore \text { Area }=\sqrt{\frac{3}{4}} \times 12^{2}-\pi(2 \sqrt{3})^{2} \\ & =(36 \sqrt{3}-12 \pi) \mathrm{cm}^{2} \end{aligned}$	
Ans17	side of square $=14 \mathrm{~cm}$   Area of shaded part :   $=$ side $^{2}-4$ sectors $\begin{aligned} & =14^{2}-4 \times \frac{90}{36} \times \pi 7^{2} \\ & =196-49 \pi \\ & =196-154=42 \mathrm{~cm}^{2} \end{aligned}$	
Ans18	$\begin{aligned} & r^{2}+r^{2}=25 \\ & r^{2}=\frac{25}{2} \\ & r=\frac{5}{\sqrt{2}} . \end{aligned}$   Area of minor segment	


| $\frac{90}{360} \times 3: 14 \times\left(\frac{5}{\sqrt{2}}\right)^{2}-1 / 2 \times\left(\frac{5}{\sqrt{2}}\right) \times \sin 90$ |
| :---: | :---: |
| $\frac{3.14 \times 25}{8} \frac{25}{4}$ |
| $=\frac{25}{4}(1.57-1)$ |
| $=6.25 \times .57=0.35625 \mathrm{~cm}^{2}$ |
| Area of circle $=\pi \mathrm{r}^{2}$ |
| $=\frac{22}{7} \times\left(\frac{5}{\sqrt{2}}\right)^{2}=3.14 \times 6.25$ |
| $=19.62 \mathrm{~cm}^{2}$ |
| Area of major segment |
| $=19.62-0.36=19.20 \mathrm{~cm}$ |
| Difference of segment $=19.26-0.36$ |
| $=18.9 \mathrm{~cm}^{2}$ |

CLASS 10
SUBJECT Mathematics
CHAPTER-13 Surface Area and Volume

Ans1	Radius of cylinder $=3 \mathrm{x}$   Radius of cone $=4 x$   Height of cylinder $=2 \mathrm{y}$   Height of cone $=3 \mathrm{y}$   Ratio of volume $=9: 8$	1
Ans2	$\begin{aligned} & \text { Volume of sphere = volume of wire } \\ & \frac{4 \pi}{3} 3^{3}=\pi \times 1^{2} \times \mathrm{h} \\ & \mathrm{~h}=9 \mathrm{x} 4=36 \mathrm{~cm} \\ & \hline \end{aligned}$	1
Ans3	1:8	1
Ans4	$\begin{aligned} & I=\sqrt{h^{2}+(R-r)^{2}} \\ & I=\sqrt{6^{2}+(20-12)^{2}}=10 \mathrm{~cm} \end{aligned}$	1
Ans5	$\begin{aligned} & \mathrm{h}=15 \mathrm{~cm}, \mathrm{r}=8 \mathrm{cml}=\sqrt{n^{2}+} \\ & \mathrm{l}=\sqrt{225+64}=17 \mathrm{~cm} \\ & \mathrm{CSA}=\pi \mathrm{rl}=\pi 8 \times 17=136 \pi \mathrm{~cm}^{2} \\ & \hline \end{aligned}$	2
Ans6	Let height $=\mathrm{h}$ and radius $=\mathrm{r}$, then $\mathrm{TSA}=2 \pi \mathrm{r}(2 \mathrm{~h})=4 \pi \mathrm{rh}$	2
Ans7	$\begin{aligned} & \mathrm{r}=5 \mathrm{~cm} \\ & \pi \mathrm{r}^{2}+\pi \mathrm{rl}=90 \pi \\ & 5 \pi(5+1)=90 \pi \\ & \mathrm{~h}=\sqrt{l^{2}-r^{2}} \\ & \mathrm{~h}=\sqrt{169-25}=12 \mathrm{~cm} \end{aligned}$	2
Ans8	$\begin{aligned} & \text { No. of lead shots }=\frac{\text { vol cuboid }}{\text { vol of lead shot }} \\ & =\frac{l x b x}{\frac{4}{3} \times \frac{22}{7} \times \frac{0.3}{2} \times \frac{0.3}{2}}=1260 \end{aligned}$	2
Ans9	$\begin{aligned} & \pi \mathrm{r}^{2} \mathrm{~h}=567 \\ & \mathrm{r}^{2} \mathrm{~h}=567 ; \mathrm{h}=7 \mathrm{~cm} \\ & \mathrm{~h}=7 \mathrm{~cm} \\ & \mathrm{r}^{2}=567 / 7, \text { implies } \\ & \mathrm{r}=9 \mathrm{~cm} \\ & \hline \end{aligned}$	2
Ans10	$\begin{aligned} & \mathrm{r}=2 \mathrm{x} ; \mathrm{h}=3 \mathrm{x} \\ & \mathrm{v}=1617 \\ & \pi(2 \mathrm{x})^{2}(3 \mathrm{x})=1617 \\ & \mathrm{x}^{3}=\frac{1617}{12} \mathrm{x} \frac{7}{222}=\frac{343}{8} \\ & \mathrm{x}=\frac{7}{2} \\ & \mathrm{so} ; \mathrm{r}=7 \mathrm{~cm} \quad \mathrm{~h}=\frac{21}{2} \mathrm{~cm} \\ & \mathrm{CSA}=2 \pi \mathrm{r}=2 \times \frac{22}{7} \times 7 \mathrm{x} \frac{21}{2} \\ & =462 \mathrm{~cm}^{2} \end{aligned}$	2
Ans11	$\begin{aligned} & \text { Volume of cone }=\text { volume of sphere } \\ & \frac{1}{3} \pi^{2} \mathrm{~h}=\frac{4}{3} \pi \mathrm{r}^{3} \\ & 6 \times 6 \times 24=4 \mathrm{R}^{3} \\ & \mathrm{R}=6 \mathrm{~cm} \end{aligned}$	2


Ans12	Let x is the height raised. $\begin{aligned} & \pi r^{2} x=\frac{4}{3} \pi r^{3} \\ & 6^{2} X x=\frac{4}{3} x 6^{3} \\ & x=8 \mathrm{~cm} \end{aligned}$	2
Ans13	$\begin{aligned} & \mathrm{d}=14 \mathrm{~cm} \mathrm{\quad r}=7 \mathrm{~cm} \\ & \mathrm{TSA}=2\left(3 \pi \mathrm{r}^{2}\right) \\ & =6 \pi \mathrm{r}^{2} \\ & =6 \pi \times 7^{2}=294 \pi \mathrm{~cm}^{3} \end{aligned}$	
Ans14	Outer radius $\mathrm{R}=5 \mathrm{~cm}$, Inner radiusr $=3 \mathrm{~cm}$ $\begin{aligned} & \mathrm{h}=\frac{32}{3} \mathrm{~cm} \\ & \frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)=\pi \mathrm{r}^{2} \mathrm{~h} \\ & \frac{4}{3}\left(5^{3}-3^{3}\right)=\mathrm{rX} 32 / 3 \\ & \frac{4}{3} \mathrm{X} 98=\frac{r^{2} x 3^{2}}{3} \\ & \mathrm{r}^{2}=\frac{196}{16} \\ & \mathrm{r}=\frac{14}{4}=\frac{7}{2} \mathrm{~cm} \\ & \mathrm{~d}=7 \mathrm{~cm} \end{aligned}$	
Ans15	$\begin{aligned} & \text { No. of spheres }=\frac{\text { vol of } \text { cylinder }}{\text { vol of sphere }} \\ & =\frac{\pi r^{2} h}{\frac{4}{3} \pi r^{3}} \\ & \frac{22 \times 45}{\frac{4}{3} \times 3 \times 3 \times 3}=5 \end{aligned}$	
Ans16	$\begin{aligned} & \mathrm{r}=8 \mathrm{~cm} \\ & \mathrm{R}=20 \mathrm{~cm} \\ & \mathrm{~V}=10459 \frac{3}{7} \\ & \mathrm{~V}=\frac{73216}{7} \mathrm{~cm}^{3} \\ & \frac{1}{3} \pi\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right)=\frac{73213}{7} \\ & \frac{1}{3} \mathrm{x} \frac{22}{7} h(400+64+160)=\frac{73216}{7} \\ & \mathrm{~h}=\frac{73216 \times 3}{22 \times 624208}=16 \mathrm{~cm} \end{aligned}$   Area of a sheet $=\pi \mathrm{r}^{2}+\pi \mathrm{rl}$ $\begin{aligned} & 1=\sqrt{h^{2}+(R-r)^{2}} \\ & 1=\sqrt{16^{2}+\left(12^{2}\right.}=20 \end{aligned}$   Area $=\pi \times 64+\pi \times 8 \times 20$ $\begin{aligned} & =224 \pi \mathrm{~cm}^{2} \\ & \text { Cost }=1.4 \times \frac{224 \times 22}{7}=\text { Rs. } 985.60 \end{aligned}$	


Ans17	$\begin{aligned} & \text { Volume of frustum } \\ & =\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right) \\ & =\frac{1}{3} \times \frac{22}{7} \times 30\left(20^{2}+10^{2}+20 \times 10\right) \\ & =\frac{220}{7} \times 700=22000 \mathrm{~cm}^{2} \\ & =22 \text { litres } \\ & \text { Cost of milk }=22 \times 25 \\ & =\text { Rs. } 5550 \end{aligned}$
Ans18	$\begin{aligned} & \text { D }=18 \mathrm{~cm} ; \mathrm{R}=9 \mathrm{~cm} \\ & \text { Inner radius }=\mathrm{r} \mathrm{~cm} \\ & \frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\ & 4\left(9^{3}-\mathrm{r}^{3}\right)=14 \times 14 \times \frac{31}{7} \\ & 729-\mathrm{r}^{3}=217 \\ & \mathrm{r}=7298-217=512 \\ & \mathrm{r}=8 \mathrm{~cm} \\ & \mathrm{~d}=16 \mathrm{~cm} \end{aligned}$
Ans19	$\begin{aligned} & \mathrm{D}=2.4 \mathrm{~cm} \\ & \mathrm{R}=1.2 \mathrm{~cm} \\ & \mathrm{R}-\mathrm{r}=0.2 \mathrm{~cm} \\ & \mathrm{R}=1 \mathrm{~cm} \\ & 1 \mathrm{~cm}^{3}=11.41 \mathrm{~kg} \\ & \text { Volume of } \mathrm{Cu}=\pi \mathrm{h}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \\ & =\frac{22}{7} \times 3.5\left(1.2^{2}-1^{2}\right) \\ & =11 \times .21 \\ & =2.31 \mathrm{~cm}^{3} \end{aligned}$
Ans20	
Ans21	Similar to answer 17
Ans22	Let height of cylinder is $h$ and radius of each is $r$; then $2 r=2 / 3 x$ total height of object   $2 \mathrm{r}=2 / 3(\mathrm{~h}+\mathrm{r})$   $\mathrm{Br}=2 \mathrm{~h}+2 \mathrm{r}$ $2 \mathrm{r}=\mathrm{h}$   Volume $=2 / 3+2 r$ $2 \mathrm{r}=\mathrm{h}$   Volume $=2 / 3 \pi r^{3}+\pi r^{2} h$   $\frac{1408}{21}=\pi \mathrm{r}^{2}\left(\frac{2 r}{3}+h\right)$ $\begin{aligned} & \frac{1408}{21}=\frac{22}{7} X \mathrm{r}^{2} X\left(\frac{2 r}{3}+\frac{2 r}{1}\right) \\ & \frac{1408}{21}=\frac{22}{7} \mathrm{x}_{3}^{8} \mathrm{r}^{3} \end{aligned}$ $\begin{aligned} & \mathrm{r}^{3}=8 \\ & \mathrm{r}=2 \\ & \mathrm{~h}=4 \mathrm{~cm} \end{aligned}$

## THE ASIAN SCHOOL, DEHRADUN

Test Paper Session 2017-18
CLASS 10
SUBJECT Mathematics
CHAPTER- 15 Probability

Ans1	B	1
Ans2	A	1
Ans3	A	
Ans4	D	
Ans5	B	
Ans6	a) $\frac{13+3}{52}=\frac{16}{52}=\frac{4}{13}$   b) $\frac{52-8}{52} \frac{44}{52}=\frac{11}{13}$	
Ans7	a) $\frac{6}{36}=\frac{1}{6}$   b) $\frac{36-6}{36}=\frac{30}{36}=\frac{5}{6}$	
Ans8	$\frac{52-(26+2}{52}=\frac{24}{52}=\frac{6}{13}$	
Ans9	Total out comes $=52-(13+3)=36$   a) $\mathrm{P}($ black fore card $)=\frac{3}{36}=\frac{1}{12}$   b) $\mathrm{P}($ red card $)=\frac{35-2}{36}=\frac{24}{36}=\frac{2}{3}$	
Ans10	Let the no. of blue marbles be $x$ $\therefore$ the no. of green marbles $=24-x$ $\mathrm{P} \text { (green) }=\frac{24-x}{24}=\frac{2}{3}$ $x=8$	
Ans11	$\begin{aligned} & \text { No. of white balls }=x+6 \\ & \text { Total balls }=14+6=20 \\ & \mathrm{P} \text { (white) }=\frac{x+b}{20}=\frac{1}{2} \\ & \mathrm{X}=4 \end{aligned}$	
Ans12	$\begin{aligned} & \text { Let no., of blue balls be } \mathrm{x} \\ & \text { Total balls }=\mathrm{x}+5 \\ & \mathrm{P} \text { (blue) }=(4 \mathrm{P} \text { (Red) } \\ & \frac{x}{x+5}=4\left(\frac{5}{x+5}\right) \\ & \mathrm{x}=20 \end{aligned}$	
Ans13	a) $x / 18$   b) No of red balls $=x+2$   Total no. of balls $=18+2=20$ $\begin{aligned} & \frac{x+2}{20}=\frac{9}{8} \times \frac{x}{18} \\ & \mathrm{x}=8 \end{aligned}$	
Ans14	Total no. of balls $=5+6+7=18$   a) $11 / 18$   b) $7 / 18$   c) $13 / 18$	
Ans15	(HHH) , (HTN), (HHT), (HTT), (THH), (TNT), (TTH), (ITT)   a) $\mathrm{P}(2 \mathrm{H})=3 / 8$   b) $P($ at least $2 H)=4 / 8=1 / 2$   c) P (at most 24) $=7 / 8$	
Ans16	Total out come $=52-3=49$   a) $3 / 49$   b) $3 / 49$   c) $23 / 49$	
Ans17	a) $10 / 49$   b) $3 / 49$	


	c) $1-3 / 49=46 / 49$	
Ans18	a) $8 / 19$   b) $6 / 9$	
Ans19	a) $5 / 17$   b) $8 / 17$   c) $13 / 17$	
Ans20	a) $4 / 52=1 / 13$   b) $26 / 52=1 / 2$   c) $52 / 8 / 52=44 / 52=11 / 13$   d) $2 / 51=1 / 26$   e) $1-(13+3 / 52)=36 / 52=9 / 13$	
Ans21	a) $13 / 52=1 / 4$   b) $12 / 52=3 / 13$   c) $1 / 52$   d) $16 / 52$   e) $16 / 52$   f) $4 / 13$	
Ans22	a) $20 / 100=1 / 5$   b) $50 / 100=1 / 2$   c) $10 / 100=1 / 10$	
Ans23	a) $5 / 17$   b) $8 / 17$   c) $13 / 17$	

