Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 1

Ans1	1000	1
Ans2	xy^2	1
Ans3	13	1
Ans4	24	1
Ans5	12	2
Ans6	7x 6 x 5 x 4 x 3 x 2 x 1 + 7	2
	= 7 (6x 5x 4x 3x 2x 1+1)	_
	$= 7 \times 721 \times 1$	
	Because it has more than 2 factors so, it is a composite number.	
Ans7	Similar to Question 6	2
Ans8	$a = 2^5 \times 3^7 \times 5^2 \times 7$	2
	$b = 2^3 \times 3^2 \times 5^6 \times 11$	
	$HCF = 2^3 \times 3^2 \times 5^2$	
	$LCM=2^5 \times 3^7 \times 5^6 \times 7 \times 11$	
Ans9	Similar to Question 6	2
Ans10	LCM of 9,12,15 in 180 min.	2
	The bells will tolltogether again after 3 hrs.	
Ans11	$\frac{91}{1250} \times \frac{91}{5^4 \cdot 2^1} = 0.0728$	2
Ans12	1250 5*2* Let 1 is notional.	2
AIISTZ	Let $\frac{1}{2+\sqrt{3}}$ is rational	
	$\frac{1}{2+\sqrt{3}} = \frac{a}{b}$ HCF of a and b in 1	
	$\sqrt{3} = \frac{b-2a}{a}$	
	$\frac{b-2a}{a}$ is a rational no. as a, b are integers	
	$=\sqrt{3}$ in rational	
	But $\sqrt{3}$ is irrational	
	∴ It is a contradiction	
	∴our assumption is wrong that $\frac{1}{2+\sqrt{3}}$ is rational ∴it is irrational no.	
1 10	Tourissumption is wrong that $\frac{1}{2+\sqrt{3}}$ is rational inc.	
Ans13	Similar to Question 12	3
Ans14	Let a is any +ve odd integer, Let $b = 4$ By E.D.L	3
	$a = bq + r, 0 \le r < b$	
	Let $b = 4$	
	$a = 4a + r, 0 \le r < 4$	
	a = 4a + 0 = 4a even a = 4a + 2 odd	
	a = 4a + 2 odd $a = 4a + 2$ even	
	$a = 4a + 3 \qquad \text{odd}$	
	a = 4a + 3 odd a = (4a+1), (4a+3) H.P	
Ans15	(1) 608, 544	3
711313	By E.D.L.	
	$608 = 544 \times 1 + 64$	
	Now, 544, 64	
	By E.D.L.	
	$544 = 64 \times 8 + 32$	
	Now, 64, 32	
	$\therefore 64 = 32 \times 2 + 0$	
	∴HCF= 32	
	(ii) Same as part (i)	
	(iii) Same as part (ii)	
Ans16	HCF = 9 LCM = 90, a = 18,b = ?	3
	$a \times b = HCF \times LCM$	

		T
	$18 \times b = 9 \times 90$	
	b =45	
Ans17	$(\sqrt{3} + \sqrt{2}is)$	3
	Prove $\sqrt{3}$ is irrational by method of contradiction.	
	Prove $\sqrt{2}$ is irrational by method of contradiction.	
	$\therefore \sqrt{2} + \sqrt{3}$ is irrational.	
	∴sum of two irrational, is irrational.	
Ans18	HCF of 726, 275	3
	By EDL	
	$726 = 275 \times 2 + 176$	
	275 and 176	
	By ED L	
	$275 = 176 \times 1 + 99$	
	176 and 99	
	∴ by EDL	
	$176 = 99x \ 1 + 77$	
	$99 = 77 \times 1 + 22$	
	And so on	
	At last	
	HCF = 11	
Ans19	Same as answer 18	3
Ans20	Boys = 20	3
	Girls = 15	
	No of graph $= n$	
	HCF of boys and girls $= 5$	
	No of graphs of boys $=$ $\frac{20}{5}$ $=$ 4 $=$ x	
	No of groups of girls $=\frac{15}{5} = 3 = y$	
	No. of groups = $4 + 3 = 7 = n$	

Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 2 Polynomials

Ans1	$Deg p(x) < \{deg g(x)$	1
Ans2	S = -3+4 = 1, $P = -3x4 = -12$	1
AIISZ	$\therefore \text{ Required polynomial} = x^2 - x - 12$	'
Ans3	S = -(-5) = 5	1
711133	A + B = 5	'
	B = 5 - 6 = -1	
Ans4	let $f(x) = x^2 - 5x + 4$	1
	$f(3) = 32 - 5 \times 3 + 4 = -2$	
	for $f(b) = 0$, 2 must be added to $f(x)$	
Ans5	Let one root be x then other root will be – x	2
	$\therefore S = x + (-x) = 0$	
	$\frac{-b}{a} = \frac{8k}{4} = 0$	
	$ \overset{a}{K} = \overset{4}{O} $	
	$\mathbf{K} = \mathbf{O}$	
Ans6	$(K-1)(-3)^2 + K(-3) + 1 = 0$	2
	Solving we will get $K = \frac{4}{3}$	
A no.7	A+B=5 and $AB=6$	1
Ans7	$\therefore A+B-3AB=5-3x6=5-18=-13$	2
Ans8	$4x^2 - 12x + 9 = (2x-3)^2 = 0$	2
Aliso		2
	$X = \frac{3}{2}, \frac{3}{2}$	
Ans9	$A + B = -1$, $AB = -1$, $SO(\frac{1}{A}) + \frac{1}{B} = \frac{A+B}{AB} = \frac{-1}{-1} = 1$	2
Ans10	$a(1)^2 - 3 (a-1) (1) - 1 = 0$	2
	a - 3a + 3 - 1 = 0	
	a=1	
Ans11	$\alpha + \beta = -1/4 \alpha \beta = 1/4$	2
	∴ Req. Polynomial $\frac{1}{4}(4x^2 + x + 1)$	
Ans12	$\alpha + \beta = \sqrt{2} \alpha\beta = 1/3$	2
	∴ Req. polynomial $3x^2 - 3\sqrt{2}x + 1$	
Ans13	On solving $6x^2 - 3.7x$ we get factors $(2x-3)(3x+1)$	3
	Thus $\alpha = 3/2$ $\beta = -1/3$	
Ans14	On dividing $3x^4 + 5x^3 - 7x^2 + 2x + 2$ by $x^2 + 3x + 1$ we get, $3x^2 - 4x + 2$ as quotient and 0 as remainder.	3
	So, $x^2 + 3x + 1$ is a factor of the given polynomial	
Ans15	From $2x^2 - 5x + 7$, $\alpha + \beta = 5/2$ and $\alpha\beta = 7/2$	3
	For required polynomial:	
	$S = (2\alpha + 3\beta) + 3\alpha + 2\beta = 5\alpha + 5\beta = 5(\alpha + \beta) = 5x \frac{5}{2} = \frac{25}{2}$ $S = (2\alpha + 3\beta) + 3\alpha + 2\beta = \frac{6\alpha}{2} + \frac{6\alpha}{2} + \frac{12\alpha\beta}{2} = \frac{6\alpha}{2} + \frac{12\alpha\beta}{2} = 1$	
	P = $(2\alpha + 3\beta)$ $(3\alpha + 2\beta) = 6\alpha 2 + 6\beta 2 + 13\alpha\beta$ = $6\alpha^2 + 6\beta^2 + 12\alpha\beta + \alpha\beta$	
	$= 6(\alpha^2 + \alpha\beta^2 + 2\alpha\beta) + \alpha\beta$ $= 6(\alpha^2 + \alpha\beta^2 + 2\alpha\beta) + \alpha\beta$	
	$= 6 (\alpha + \beta)^2 + \alpha \beta$	
	$= 6 (5/2)^2 + 7/2 = 41$	
	$\therefore \text{ Required polynomial} = K (x^2 - S x + P)$	
	$= K (x^2 - \frac{25x}{3} + 41)$ where k is any non zero real number.	
Ans16	On dividing $8x^4 + 14x^3 - 2x^2 + 7x - 8$ by $4x^2 + 3x - 2$ we get $2x^2 + 2x - 1$ as quotient and $14x - 10 - y$ as	3
WII210	of dividing $8x + 14x - 2x + 7x - 8$ by $4x + 3x - 2$ we get $2x + 2x - 1$ as quotient and $14x - 10 - y$ as remainder.	٥
	∴ Remainder should be 0.	
	$\therefore 14x - 10 - y = 0$	
	y = 14x -10 should be subtracted from given polynomial/	
Ans17	$f(x) = \sqrt{3} x^2 - 8x + 4\sqrt{3} = 0$	3
	$(x - 2\sqrt{3})(\sqrt{3}x - 2) = 0$	
	\(\tau = 1 \cdot \)\(\tau = 1 \cdot \cdot \)	1

	$X = 2\sqrt{3} \text{ or } x = \frac{2}{\sqrt{3}}$	
	$S = 2\sqrt{3} + \frac{2}{\sqrt{3}} = \frac{8}{\sqrt{3}} = \frac{-coeff.of x}{coeff of x^2}$	
	$S = 2\sqrt{3} + \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\cosh \theta \cdot \sin^2 \theta}$	
	$P = 2\sqrt{3} \times \frac{2}{\sqrt{3}} = \frac{4\sqrt{3}}{\sqrt{3}} = \frac{-constant \ terms}{coeff \ of \ x^2}$	
	Hence verified V3 V3 Coeff of x ² Hence verified	
Ans18	Let $f(y) = 6y^2 - 7y + 2$	3
711310	$S = \frac{7}{6} P = \frac{1}{3}$	3
	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{7/6}{1/3} = \frac{7}{2}$	
	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{7}{1/3} = 3$	
	Required polymonail = $y^2 - 7/2 y + 3 = \frac{1}{2} (2y^2 - 7y + 6)$	
Ans19	$B = 7\alpha$ than, $S = 8\alpha$	3
	$-\left(\frac{-8}{3}\right) = 8 \alpha = \alpha = \frac{1}{3}$	
	$P = 7 \alpha^2 = \frac{2K+1}{3}$	
	.	
	$7(1/3)^2 = \frac{2K+1}{3} = K = 2/3$	
Ans20	Let $f(x) = x^4 + 2x^3 + 8x^2 + 12x + 18$ and $g(x) = x^2 + 5$	3
	In dividing $f(x)$ by $g(x)$ we get $q(x) = x^2 + 2x + 3$ and $r(x) = 2x + 3$ on comparing the remainder with	
	px+q,	
	Px + q = 2x+3 $P = 2$ $q = 3By division algorithm, we have f(x) = g(x) x q(x) + r(x)$	_
Ans21		4
	f(x) - r(x) = g(x) x q(x)	
	$f(x) + \{-r(x)\} = g(x) \times q(x)$	
	on dividing $f(x)$ by $g(x)$ we get $g(x) = 4x^2 - 6x + 22$ and $g(x) = -61x + 65$	
	$q(x) = 4x^2 - 6x + 22$ and $q(x) = -61x + 63$ ∴ We should add $-r(x) = 61x - 65$ to $f(x)$ so that the resulting polynomial is divisible by $g(x)$.	
Ans22	Let $p(x) = 2x^2 + 3x + \lambda$	4
7111322	$P(1/2) = 2 (1/2)^2 + 3x 1/2 + \lambda = 0$	
	$\lambda = -2$	
	$\alpha + \frac{1}{2} = \frac{-3}{2} \alpha = -2$	
A := a 2 2		4
Ans23	Let α and $\frac{1}{\alpha}$ be the zeroes	4
	$P = \alpha \times 1/\alpha = 1 = \frac{6a}{a^2 + 9} = a = 3$	
Ans24	$\therefore \sqrt{\frac{5}{3}} \text{ and } \sqrt{\frac{-5}{3}} \text{ are zeroes so, } \left(x - \sqrt{\frac{5}{3}}\right) \left(x - \sqrt{\frac{5}{3}}\right) = x^2 - \frac{5}{3} \text{ is factor of the given polynomial on dividing}$	4
	$\frac{1}{3}$ and $\sqrt{\frac{1}{3}}$ are zeroes so, $(x-\sqrt{\frac{1}{3}})(x-\sqrt{\frac{1}{3}})=x-\frac{1}{3}$ is factor of the given polynomial on dividing	
	the given polynomial by $x^2 - \frac{5}{3}$ we get	
	$3x^2 + 6x + 3$ as q(x) and remainder 0	
	3(x+1)(x+1)	
Ans25	Other zeros are -1 , -1 From polynomial, $6x^2 + x-1$	4
711020	$\alpha + \beta = -1/6$	
	$\alpha \beta = -1/6$	
	$\alpha^3\beta + \alpha\beta^3$	
	$\alpha\beta \ (\alpha^2 + \beta^2)$	
	$\alpha\beta \left[(\alpha+\beta)^2 - 2\alpha\beta \right]$	
	$\alpha\beta \left[(\alpha + \beta)^2 - 2 \alpha\beta \right] - \frac{1}{6} \left[(-1/6)^2 - 2 (-1/6) \right]$	
	$\frac{1}{6}[1/36 + 1/3]$	
	[- [[1/30 + 1/3]	
	$\left(-\frac{1}{6}X\left(\frac{1+12}{36}\right)\right)$	
	$-\frac{1}{6} \times \left(\frac{1+12}{36}\right) \\ -\frac{13}{216}$	
	216	
Ans26	If $\sqrt{3}$ is a zero of given polymonial then $x - \sqrt{3}$ must be its factor : on dividing $x3+x2-3x-3$ by $x-\sqrt{3}$ we get	4
7 11 1320	$x^2 + (\sqrt{3} + 1) x + \sqrt{3}$ as quotient and zero as reminder.	'
	x + (y + 1) x + y + 3 as quotient and zero as reminder.	

	$x^2 + (\sqrt{3} + 1) x + \sqrt{3}$	
	$x^2 + \sqrt{3}x + x + \sqrt{3}$	
	$x(X+\sqrt{3}x+1(X+\sqrt{3}))$	
	$(x+\sqrt{3})$ $(x-1)$	
	\therefore other zero are $-\sqrt{3}$, -1 .	
Ans27	$(x-2+\sqrt{3})$ (x-2- $\sqrt{3}$) as factor	4
	on dividing given polynomial by it we get $x^2 - 2x - 35$	
	∴ other zeros are -5 and 7	
Ans28	On dividing $ax3 + bx - c$ by $x^2 + bx + c$ we get $ax-ab$ as quotient and $-acx + bx + ab^2x + abc - c$ as	4
	reminder.	
	$-acx + bx + ab^2x + abc - c$	
	$x (ab^2 - ac + b) + c(ab-1) = 0$	
	= 0	
	= ab = 1	
	To make the remainder zero, $ab = 1$	

Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 3 Pair of Linear Equations in two variables

Δ 4	h 2k 2	14
Ans1	$\frac{b}{2} = \frac{2k}{5} \neq -\frac{2}{1}$ for parallel lines	1
	K = 15/4	
Ans2	Intersecting point will be (0,y)	1
	x-y=8	
	0-y = 8	
	Y = -8	
	\therefore Required pt is $(0,-8)$	
Ans3	On dividing $x^2 - 5x - 6$ by x-6 we get $x + 1$ as quotient and zero as remainder	1
	∴other zero is -1	
Ans4	$\frac{4}{12} = \frac{3}{9} \neq \frac{6}{15} \implies \frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$	1
	∴ equations do not represent a pair of coincident lines.	
Ans5	Yes, $\frac{a1}{a2} = \frac{2a}{4a} = \frac{1}{2}$, $\frac{b1}{b2} = \frac{b}{2b} = \frac{1}{2}$, $\frac{c1}{c2} = \frac{-a}{-2a} = \frac{1}{2}$	2
	∴ equations are consistent	
Ans6	$\frac{a1}{a} - \frac{1}{a} \frac{b1}{b} - \frac{-1}{a} \rightarrow \frac{a1}{a} \neq \frac{b1}{a}$ so it has a unique solution and is consistent	2
	a2 - 6, $b2 - 6$ $a2 - b2$ $b2$ So it has a unique solution and is consistent.	
Ans7	$\frac{a_1}{a_2} = \frac{1}{6}, \frac{b_1}{b_2} = \frac{-1}{6} \Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \text{ so it has a unique solution and is consistent.}$ $\frac{a_1}{a_2} = \frac{5}{7}, \frac{b_1}{b_2} = \frac{-2}{3} \Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \text{ so it has a unique solution and is consistent.}$	2
Ans8	$\frac{a1}{a2} = \frac{2}{3}, \frac{b1}{b2} = \frac{2}{3} = \frac{c1}{c2} = \frac{2}{3} \Rightarrow \frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2} = \text{coincident lines.}$ $\frac{a1}{a2} = \frac{9}{18} = \frac{1}{2}, \frac{b1}{b2} = \frac{1}{2}, \frac{c1}{c2} = \frac{1}{2} \Rightarrow \frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2} = \text{coincident lines.}$	2
	a2 3' b2 3 c2 3 a2 b2 c2 - confedent files.	
Ans9	$\frac{d1}{d2} = \frac{9}{18} = \frac{1}{2}, \frac{b1}{b2} = \frac{1}{2}, \frac{c1}{c2} = \frac{1}{2} \Rightarrow \frac{d1}{d2} = \frac{b1}{b2} = \frac{c1}{c2}$ coincident lines.	2
Ans10	$\frac{a1}{a2} = 3 \frac{b1}{b2} = 3 \frac{c1}{c2} = \frac{10}{9}$	2
1	$\frac{a^2}{a^2} \frac{b^2}{b^2} = \frac{3}{c^2} \frac{a^2}{9}$	
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} = \text{parallel lines}$	
Ans11	For coincident lines $\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$	2
	a2 $b2$ $c2$ $k+1$ $3k$ 15	
	$\frac{k+1}{5} = \frac{3k}{k} = \frac{15}{5}$	
	$\frac{k+1}{5} = 3$	
	k = 14	
Ans12		2
Alisiz	For no solution: $\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$	2
	$\frac{k}{12} = \frac{3}{k} = \frac{-(k-3)}{-k}$ $K^{2} = 36$	
	$K^{2} = 36$	
	K = 6	
Ans13	x = 1, y = -1	3
Ans14	x = 2, y = 1	3
Ans15	$\frac{2}{2} - \frac{3}{3} - \frac{7}{2}$	3
	$\frac{a-b}{a-b} = \frac{a+b}{a+b-2}$	
	a=5b a-2b=3	
	5b - 2b = 3	
	b = 1	
Anc14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
Ans16	$\frac{a_1}{a_2} = \frac{7}{5}, \frac{b_1}{b_2} = \frac{2}{3}$	ာ
	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$: unique solution.	
	On solving the equations we get,	
	x = 3 and $y = -7$	
Ans17	x - 3 and $y - 7x + 3x + y = 180$	3
/ 1131/	4x + y = 180 - (i)	
	3y - 5x = 30 (ii)	
	On solving (i) and (ii)	
	x = 30	
	$\angle A = 30^{\circ}, \angle B = 90^{\circ} \angle C = 60^{\circ}$	
		•

Ans18	r . 1 , 1	3
Alisto	Let $\frac{1}{x-1} = p$ and $\frac{1}{y-2} = q$	3
	The given equation becomes,	
	6p - 3q = 1 (i)	
	5p + q = 2 (ii)	
	on solving (i) and (ii) we get, $P = \frac{1}{3}$ and $q = \frac{1}{3}$	
	$\frac{1}{x-1} = \frac{1}{3} \qquad \frac{1}{y-2} = \frac{1}{3} x = 4 \qquad y = 5$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ans19	Let A's present age be x years and B's present age by y years.	3
/111317	Five years ago,	٦
	A = (x - 5) years B (y-5) years	
	(x-5) = 3 (y-5)	
	3y - x = 10 (i)	
	Ten years hence, $A = x + 10$ B $y + 10$	
	x + 10 = 2 (y+10)	
	2y - x = -10 (ii)	
	On solving (i) and (ii) we get, $x = 50$ years and $B = 20$ years	
Ans20		3
7.11320	Let the number be x and demo be y then fraction becomes $\frac{x}{y}$	~
	$\frac{x-1}{y} = \frac{1}{3}$	
	$\frac{y}{3} = \frac{3}{100} = \frac{3}{1$	
	$\begin{array}{ccc} 3x - y - 3 & (1) \\ x & 1 \end{array}$	
	3x - y = 3 (i) $\frac{x}{y+8} = \frac{1}{4}$	
	4x - y = 8 (ii)	
	On solving (i) and (ii) we get $x = 5$ - 12 so require fractions $5/12$.	
Ans21	2x + 4y = 10	4
AIISZI	5-x	4
	$y = \frac{5 - x}{2} \\ x 1 3 5 \\ y 2 1 0$	
	x 1 3 5	
	y 2 1 0	
	3x + 6y = 12	
	$y = \frac{4-x}{2}$	
	x = 2 = 0 = 4	
	y 1 2 0	
	on drawing the graphs we obtain parallel lines i.e. no solution.	
Ans22	By elimination method, $3x - 5y = 4$ (i) $9x - 2y = 7$ (ii)	4
	Multiply eq (i) by 3, we get $9x-15y = 12$ (iii)	
	9x - 2y = 7 (ii)	
	Subtracting (ii) from (iii) we get,	
	9x - 15y = 12	
	9x - 2y = 7	
	-13y = 5	
	Y = -5/13	
	Putting the value of y in equation i(i) we have,	
	$9x - 2\left(\frac{-5}{13}\right) = 7$	
	$X = \frac{9}{13}$	
	∴ required solution is $x = \frac{9}{13}$, $y = \frac{-5}{13}$	
Ancoo		1
Ans23	Let the digits at units place be x and tens place be y then number becomes $10 \text{ y} + \text{x}$ No. formed by inter changing the digits $= 10x + y$	4
	No. formed by inter changing the digits = $10x + y$ (10y + x) + (10x + y) = 110	
	(10y + x) + (10x + y) = 110 x + y = 10 (i)	
	x + y = 10 (1) 10 y + x - 10 = 5 (x + y) + 4	
	4 x - 5 y = -14 (ii)	
	On solving (i) and (ii)	
	$x = 4 \qquad y = 6$	
	\therefore NO is $10x6 + 4 = 64$	
	110 10 10 10 T T - UT	1

Ans24	Let CP of table be Rs x and Cp of chair be Rs y.	4		
AHSZ4	A/c to I condition,	4		
	S.P of table = $x + \frac{10x}{100} = \frac{100x}{100}$			
	S.P of chairs = $y + \frac{25y}{100}$			
	So, $\frac{1 to x}{100} + \frac{125 y}{100} = 1050 - (i)$			
	A/C to 2 nd condition,			
	S.P of table = $x + \frac{25x}{100} = \frac{125x}{100}$			
	S.P o of chair = $y + \frac{10y}{100} = \frac{110y}{100}$			
	So, $\frac{125}{100}$ x + $\frac{110y}{100}$ = 1065 = (ii)			
	On solving (i) and (ii) we get $x = 500$, $y = 400$			
	∴ cp of table of Rs 500 and cp of chair is Rs 400.	1.		
Ans25	Let one man alone can finish the work is x days and one boy can finish the work in y days then.	4		
	One day work of one man = $\frac{1}{x}$, One day work of one boy = $\frac{1}{y}$			
	∴ one day work of 8 men = $\frac{8}{x}$, one day work of 12 boys = $\frac{12}{y}$			
	A/c to question, $10 \left(\frac{8}{x} + \frac{12}{y}\right) = 1$			
	$\frac{80}{x} + \frac{120}{y} = 1$ (1)			
	and $14\left(\frac{6}{xx} + \frac{8}{y}\right) = 1$			
	$\frac{84}{x} + \frac{122}{y} = 1$ (2)			
	Now, put $\frac{1}{x}$ = u and $\frac{1}{y}$ = v in eq (1) and (2) we get			
	80u + 120v = 1 and 84u + 112 v = 1			
	By using cross multiplication, we have			
	$\frac{u}{-120+112} = \frac{-v}{-80+84} = \frac{1}{80x112-84 \ x \ 120}$			
	-120+112 -80+84 80x112-84 x 120			
	On solving further, $u = \frac{1}{140}$ and $v = \frac{1}{280}$ $\frac{1}{x} = \frac{1}{140} \frac{1}{y} = \frac{1}{280}$			
	$\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2}$			
	x = 140 $y = 280x = 140$ $y = 280$			
	∴ one man alone can finish the work in 140 days and one boy is 280 days.			
Ans26	x = 2, $y = -1$	4		
Ans27	Rs 10, Rs 15	4		
Ans28	(0,0), (4,4), (6,2)	4		
AHSZO	(U,U), (T,T), (U,Z)	4		

Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics Chapter 4 Quadratic Equations

Anc1	$D = b^2 - 4ac = (-b)^2 - 4(6)(2) = b^2 - 48$	1
Ans1		I
	$b^2 - 48 = 1$	
	$b^2 = 49$	
	$b = \pm 7$	
Ans2	$\sqrt{2x^2+9}=9$	1
	Squaring both sides	
	$2x^{2} + 9 = 81$	
	$2x^2 = 72$	
	$x^2 = 36$	
	$x = \pm 6$	
Ans3	$(1)_2$ - 1, 5	1
Aliss	$\frac{1}{(\frac{1}{2})^2} + K(\frac{1}{2}) - \frac{5}{4} = 0$	
	K=2	
Ans4	For equal roots $D = 0$	1
	$b^2 - 4ac = 0$	
	$(1)^2 - 4xKxK = 0$	
	1 - 4k2 = 0	
	$K = \pm \frac{1}{2}$	
Ans5	D=0	2
	b2 - 4ac = 0	
	$(-2k)^2 - 4(k)(6) = 0$	
	$4k^2 - 24k = 0$	
	4k (k-6) = 0	
	K = 0.6	
Ans6	$10x - \frac{1}{2} = 3$	2
71130	Γ	
	$10x^2 - 1 = 3x$	
	$10x^2 - 3x - 1 = 0$	
	$10x^2 - 5x + 2x - 1 = 0$	
	5x (2x-1) + 1 (2x-1) = 0	
	$X = -\frac{1}{5}, \frac{1}{2}$	
A 207		2
Ans7	$15x^2 - 10\sqrt{6}x + 10 = 0$	2
	$5(3x^2 - 2\sqrt{6}x + 2) = 0$	
	$3x^2 - \sqrt{6}x - \sqrt{6}x + 2 = 0$	
	$\sqrt{3}x (\sqrt{3}x - \sqrt{2}) - \sqrt{2} (\sqrt{3}x - \sqrt{2}) = 0$	
	$(\sqrt{3}x - \sqrt{2}) \sqrt{3}x - \sqrt{2} = 0$	
	$x = \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$	
	$\frac{\sqrt{3}}{\sqrt{3}}$	\perp
Ans8	$D = b^2 - 4ac$	2
	$(10)^2 - 4x13\sqrt{3} \times \sqrt{3}$	
	= 100 - 156	
	= -56	
	No real roots	
Ans9	$1 \qquad bx + ax + ab$	2
	$\frac{a+b+x}{a+b+x} = \frac{abx}{a}$	
	abx = (bx+ax+ab)(a+b+x)	
	$abx = abx + b^2x + bx^2 + a^2x + abx + ax^2 + a^2b + ab^2 + abx$	
	$0 = bx^{2} + ax^{2} + b^{2}x + a^{2}x + 2abx + a^{2}b + ab^{2}$	
	$= x^{2}(a+b) + x (a^{2}+b^{2}+2ab) + ab(a+b)$	
	$= (a+b)[x^2 + x (a+b)+ab]$	
	$= (a+b)[x + x (a+b)+ab]$ $= x^2 + ax + bx + ab$	
	= x (x + a) + b(x + a)	

	0 (. 1) ()		
	0 = (x+b) (x + a) x = -b, -a		
Ans10			2
7 11 10 10	$3x^{2} - \sqrt{6}x + 2 = 0$ $3x^{2} - \sqrt{6}x - \sqrt{6}x + 2 = 0$		-
	$x = \sqrt{2/3}, \sqrt{2/3}$		
	Α – γ 27 3 , γ 27 3		
Ans11	$abx^{2} + (b^{2} - ac) x - bc = 0$		2
	$abx^2 + b^2x - acx - bc = 0$		
	bx (ax + b) - c(ax + b) 0		
Ans12	x = c/b, $-b/a4\sqrt{5}x^2 - 17x + 3\sqrt{5} = 0$		2
Alisiz	$4\sqrt{5} \times 2 - 5x - 12x + 3\sqrt{5} = 0$		2
	$\sqrt{5} \times (4x - \sqrt{5}) - 3(4x - \sqrt{5}) = 0$		
	$(\sqrt{5} \times -3)(4x - \sqrt{5}) = 0$		
	$x = 3/\sqrt{5}, \sqrt{5}/4$		
	X = 3/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Ans13	$ax^2 + a = a^2x + x$		3
	$\int ax^2 - (a^2 + 1) x + a = 0$		
	$ax^2 - a^2x - x + a = 0$		
	ax(x-a) - 1 (x-a) = 0 (x-a) (ax-1) = 0		
	(x-a)(ax-1) = 0 x = a, 1/a		
Ans14	$4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$		3
	$4\sqrt{3}x^2 + 8x - 3x - 2\sqrt{3} = 0$		
	$4x(\sqrt{3}x+2)-\sqrt{3}(\sqrt{3}x+2)=$:0	
	$(4x - \sqrt{3})(\sqrt{3}x + 2) = 0$		
	$x = \frac{\sqrt{3}}{4}, \frac{-2}{\sqrt{3}}$		
	$\lambda = \frac{\lambda}{4}, \sqrt{3}$		
Ans15	For real and equal roots D = 0		3
	$x^2 + kx + 64 = 0$	$x^2 - 8x + k = 0$	
	$D = b^2 - 4ac = 0$	D = b2 - 4ac	
	$k^2 - 256 = 0$	= 64 - 4k = 0	
Ans16	$k = \pm 16$ $D = b2 - 4ac$	k = 16	2
AHSTO	$\begin{vmatrix} D - 62 - 4ac \\ = 48 - 48 = 0 \end{vmatrix}$		3
	Roots are real and equal		
	$3x^2 - 4\sqrt{3}x + 4 = 0$		
	$3x^2 - 2\sqrt{3}x - 2\sqrt{3}x + 4 = 0$		
	$(\sqrt{3}x-2)(\sqrt{3}x-2)=0$		
	$X = \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$		
Ans17	$(c-a)^2 - 4(b-c) (a-b) = 0$		3
	$c^{2} + a^{2} - 2ac - 4 (ba-b^{2} - ac + bc) = 0$		
	$c^{2} + a^{2} - 2ac - 4ba + 4b^{2} + 4ac - 4bc = 0$	() 0	
	$\begin{vmatrix} c^2 + a^2 + 2 & (a) & (c) - 2 & (2b) & (a) + (2b)^2 + 2(2b) \\ (c + a - 2b)^2 = 0 \end{vmatrix}$	(c)=0	
	(c + a - 2b) = 0 c + a = 2b		
Ans18	$x^2 + (x+1)^2 = 421$		3
	$x^2 + x^2 + 2x + 1 = 421$		
	$2x^2 + 2x - 420 = 0$		
Apc10	$\begin{array}{c} x^2 + x - 210 = 0 \\ x + 1 & x - 2 \end{array}$		2
Ans19	x-1 $x+2$		3
	$x^2 + 3x - 10 = 0$		
	x= 2, -5		1
Ans20	$x = \frac{+6 \pm \sqrt{36 + 40}}{10} = \frac{-6 \pm \sqrt{76}}{10}$		3
<u> </u>	10 10		ı

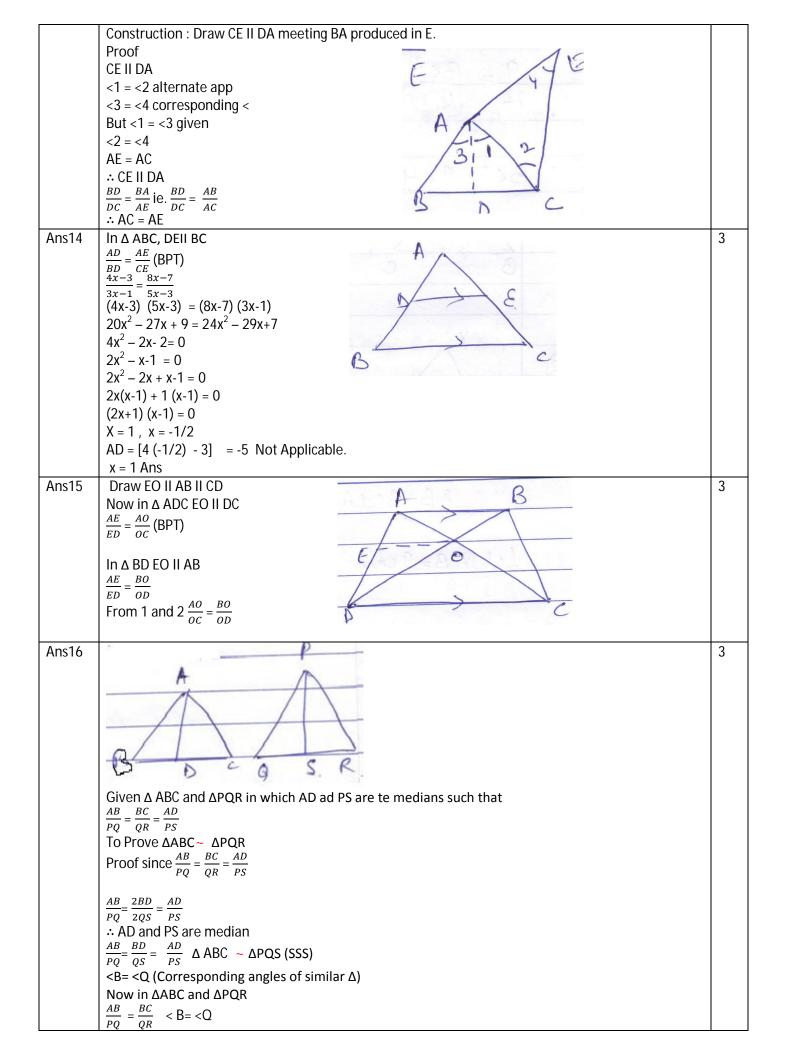
	$+6\pm2\sqrt{19}$ $-3+\pm19$	
	$=\frac{10}{10} = \frac{10}{10}$	
Ans21	Let x be the usual speed,	4
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
	x = -30, 25	
	∴ usual speed of the train = 25 km/hrs	
Ans22	$\frac{1}{2} \times 5x \times (3x - 1) = 60$	4
	L	
	x = 3, -8/3 x = 5, -2, -15 $y = -(2x, 1) = 9$	
	L = 5x3 = 15, B = (3x-1) = 8	
A == 2.2	$H = \sqrt{L^2 + B^2} = \sqrt{15^2 + 8^2} = 17 \text{ cm}$	4
Ans23	$\frac{6500}{x_{1}^{2}15} + 30 = \frac{6500}{x}$	4
	$x^2 + 15x - 3250 = 0$	
	(x + 65) (x-50) = 0	
	x = -65, +50	
	∴ neglecting negative number, x= 50	
Ans24	Let num. be x and then deno is x+2 and fraction is $\frac{x}{x+2}$	4
	$\frac{x}{x^{2}} + \frac{x+2}{x^{2}} - \frac{34}{x^{2}}$	
	$\frac{x}{x+2} + \frac{x+2}{x} = \frac{34}{15}$ $x^2 + 2x - 15 = 0$	
	(x + 2x - 13 = 0) (x + 5) (x-3)	
	x = 3 neglecting negative value.	
	$\therefore \text{ fraction} = \frac{3}{5}$	
Ans25	Let B alone takes x days to finish the work and A alone takes x- 6 days.	4
	A/c to question, $\frac{1}{x} + \frac{1}{x-6} = \frac{1}{4}$ $x^2 - 14x + 24 = 0$	
	$x^2 - 14x + 24 = 0$	
	(x-12)(x-2)=0	
	x = 12, 2	
	But x cannot be less than 6 so we take $x = 12$	
	∴ B can finish the work in 12 days.	
Ans26	*	4
	Speed in upstream = $(15-x)$ km/hr speed in down stream = $(15+x)$ km/hr	
	$\frac{30}{15+x} + \frac{30}{15-x} = 4\frac{1}{2}$	
	$-x^2 + 225 - 200 = 0$	
	$x = \pm 5$	
	∴speed of stream = 5 km/hr	
Ans27	Let time taken by tap of larger diameter $= x hrs$	4
	Let time taken by tap of smaller diameter = $x + 2$ hrs	
	A/C to question, $\frac{1}{x} + \frac{1}{x-2} = \frac{12}{35}$	
	$6x^2 - 23x - 35 = 0$	
	(6x+7)(x-5)=0	
	$\dot{x} = -7/6, 5$	
	Neglecting negative value because time can't be –ve.	
	\therefore x = 5 hrs.	
	Smaller tap can fill the tank in 7 hrs and larger tank in 5 hrs.	
Ans28	a) Let the cost price of the toy be Rs x. Then gain = $x\%$	4
	$Gain = Rs \left(x \times \frac{x}{100} \right) = \frac{x^2}{100}$	
	SP = C.P + gain	
	$24 = x + \frac{x^2}{100}$	
	$\frac{24 - x + 100}{100}$	
	$x^2 + 100 x - 2400 = 0$	
	(x-20) (x+120) = 0	
	- 20 120	
	x = 20, -120	
	 x = 20, -120 C.P of is Rs. 20 b) Quadratic Equation c) Genuine Profit 	

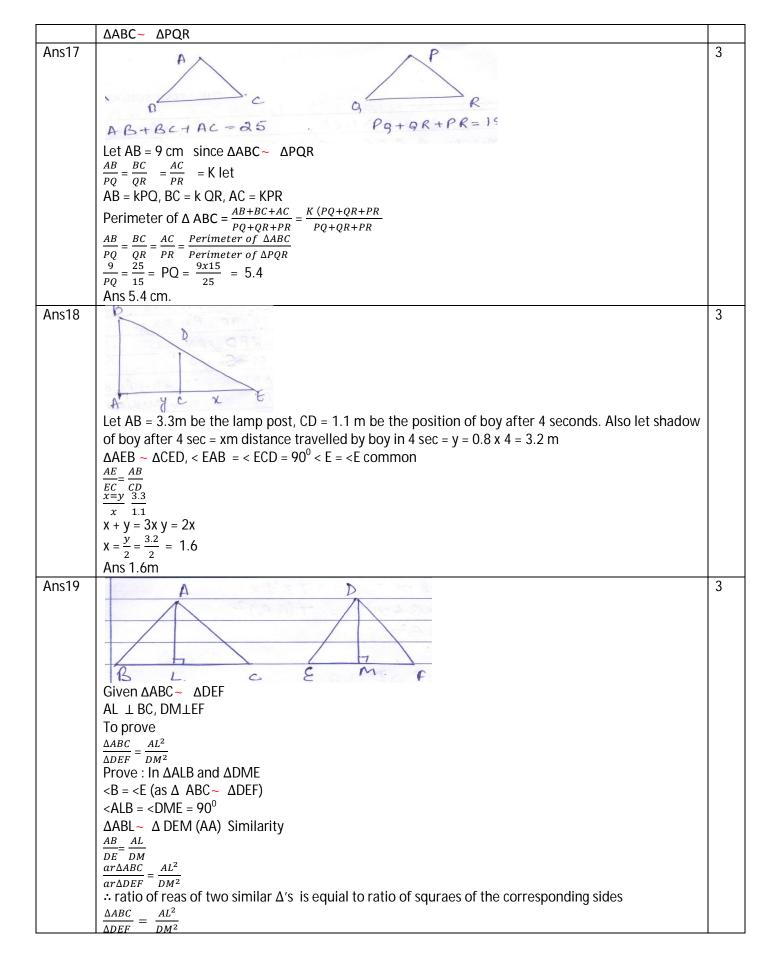
Test Paper Session 2017-18

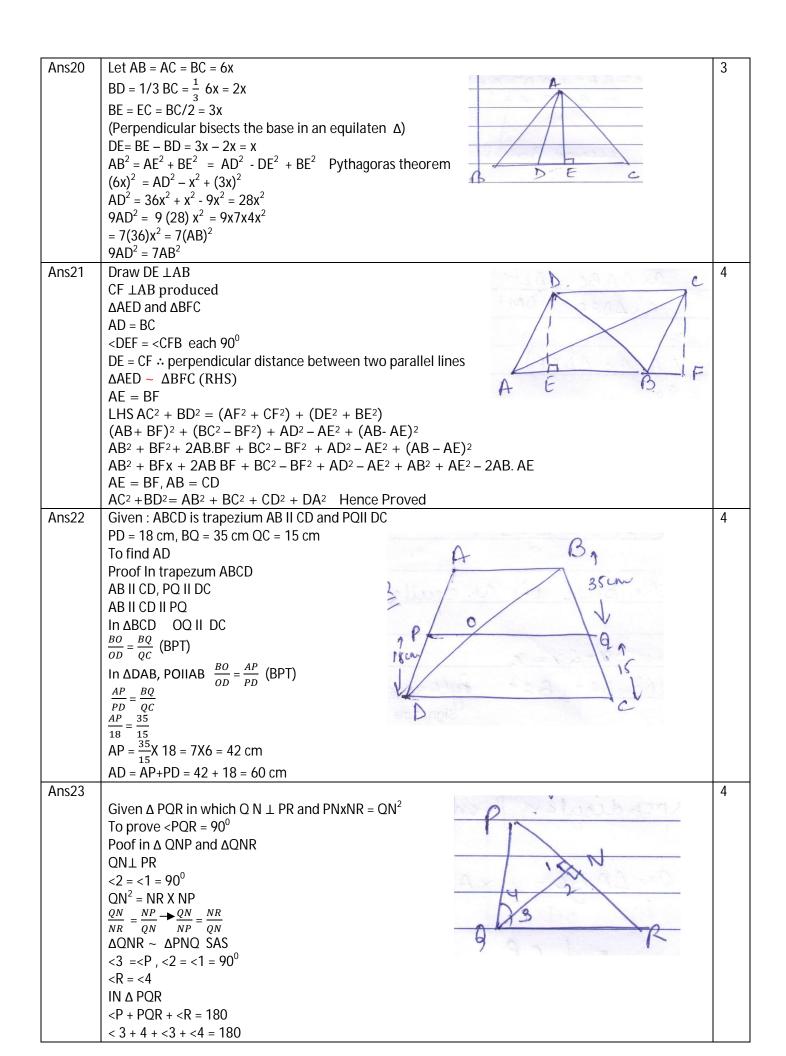
CLASS 10 SUBJECT Mathematics Chapter 5 Arithmetic Progression

Ans1.	a-18 = -3-b	1
AHST.		1
Ans2	a+b=15	1
	$a=3, d=1-3=-2, a_5=3+(5-1)(-2)$ $a_5=-5$	
Ans3	$a = -2$, $d = -2$, $a_1 = -2$, $a_2 = -4$, $a_3 = 6$, $a_4 = -8$	1
Ans4	4k-6-k-2=3 k-2-4k+6	1
	3k - 8 = -k + 4	
	4k = 12	
	k= 3	
Ans5	Let n^{th} term of A.P be zero; $a_n = 0$	2
	a+(n-1) d = 0	
	120 + (n-1) (-4) = 0	
	n = 31	
	∴ The first negative term will be $31 + 1 = 32^{nd}$ term.	
Ans6	If $a_n = 184$, $a = 3$, $d = 4$	2
	$a_n = a + (n-1) d$	
	184 = 3 + (n-1) 4	
	n = 46.25	
	Thus 184 is not term of given A.P.	
-	2x + 1 - x - 3 = x - 7 - 2x - 1	2
	x = -3	
Ans8	Put $a_n = 100$, $a = 25$, $d = 3$	2
	$a_n = a + (n-1) d$	
	100 = 25 + (n-1) d	
	N = 26	
	∴ 100 is a term of given A.P	
Ans9	Let $a = 3$, $d = 7$	2
	$a_n = a_{13} + 84$	
	a + (n-1) d = a + 12d + 84	
	n=25	
Ans10	$5a_5 = 8a_8$	2
	5(a+4d) = 8(a+7d)	
	a + 12d = 0	
	$a_{13} = 0$	
Ans11	Let common diff. = d	2
	a + d = 10; $a + 4 d = 31$	
	d = 7 and $a = 3$	
	a = 3, b = 17, c = 24	
Ans12	$a_8 = 0 \qquad a = -7d$	2
	$a_{38} = a + 37d = -7d + 37d = 30d$	
	$a_{18} = a + 17d = -7d + 17d = 10d$	
	$a_{38} = 3 \times 10d = 3 \times a_{18}$	
	$a_{38} = 3a_{18}$	
Ans13	a = 254, d = -5	3
	$a_{10} = a + 9d = 254 + 9 (-5) = 209$	
	∴ 10 th term from the back is 209.	
Ans14	$a_n = S_{n-1} S_{n-1}$	3
	$a_{n-1} = S_{n-1} - S_{n-2}$	
	$S_n - 2S_{n-1} + S_{n-2} = S_n - S_{n-1} - S_{n-1} + S_{n-2}$	
	$= (S_n - S_{n-1}) - (S_{n-1} - S_{n-2})$	
	$= T_n - T_{n-1} = d$	
		İ
A 4-	101 1 7 007	_
Ans15	$a = 101, d = 7, a_n = 997$ $a_n = a + (n-1) d$	3

	997 = 101 + (n-1) 7	
	n = 129	
Ans16	Let the number of terms be n and a_n be x.	3
	a = -4, $d = 3$	
	$x = -4 + (n-1)^3$	
	$n = \frac{x+7}{3}$	
	$\frac{(x+7)(x-4)}{(x-4)} = 437$	
	6	
	x = 50 or -53 Nucleoting, we value $x = 50$	
Ans17	Neglecting –ve values, $x = 50$	2
AHS17	The series as per question is $102,108,114,$, 198 is an AP $198 = 102 + (n-1) 6$	3
	n = 17	
Ans18	$S_n = S_{17} = 17/2 (102 + 198) = 2550$ $a = 9, d = -3 S_n = -216$	3
7	n/2 [2a + (n-1)d] = -216	
	n/2 [2(9) + (n-1)(-3) = -216	
	$n^2 - 7n - 144 = 0$	
	n = -9 or 16	
	\therefore n = 16 neglacting – ve values	
Ans19	$S_n = 3n^2 - 4n$	3
	$S_1 = -1, S_2 = 4$	
	$\mathbf{a}_1 = \mathbf{S}_1 = -1$	
	$a_2 = S_2 - S_1 = 4 - (-1) = 5$	
	d = 6	
A == 20	$a_{12} = (-1) + 11x 6 = 65$ $a = 12, a_n = 264, d= 4$	2
Ans20		3
	$n = \frac{a_n - a}{d} + 1 = \frac{264 - 12}{4} + 1 = 64$	
	There are 64 ,multiples of 4 that lie between 11 and 266.	
Ans21	$S_4 = 280, d = 20 \text{ n} = 4$	4
	$S_n = \frac{n}{2} [2a + (n-1) d]$	
	$S_n = \frac{4}{2} [2a + 3x \ 20]$	
	= 2(2a + 60)	
	$\frac{280}{2} = 2a + 60$	
	a = 40	
	a = 40 ∴ four prizes are Rs 40,60,80 and Rs 100	
Ans22	Let 1 st term = a, common diff = d	4
AHSZZ	$S_m = S_n$	4
	$\frac{m}{2} [2a + (m-1) d] = \frac{n}{2} [2a + (-1) d]$	
	2a + (m+n-1) d = 0	
	$S_{m+n} = \frac{m+n}{2} [2a + (m+n-1)d]$	
	$=\frac{m+n}{2} \times 0 = 0$	
Ans23	a = 20, d = 15, S = 3250	4
	$S_n = \frac{n}{2} [2a + (n-1) d]$	
	$3250 = \frac{n}{2} [2a + (n-1) 15]$	
	L	
	n = -65, 20 • Man will repay loop after 20 months	
Ans24	∴ Man will repay loan after 20 months. a + 2d = 11 (1)	1
A11524	a + 2d = 11 (1) a+9d = 2 (a+4d) + 1	4
	a+9d-2 $(a+4d)+1$ $-a+d=1$ (2)	
	Solving (1) and (2)	
	a = 3, d = 4	
	$S_3 = \frac{30}{2} [6 + 2a \times 4]$	
٨٠٠٥٢	= 1830	1
Ans25	$a_3 + a_7 = 6$; $a_3 \times a_7 = 8$	4


	2a + 8d = 6; $(a+2d)(a+6d) = 8$	
	a + 4d = 3 = a = 3-4d	
	(3-4d+2d)(3-4d+6d)=8	
	(3+2d)(3-2d) = 8	
	$9-4d^2=8$	
	$d = -\frac{1}{2}, \frac{1}{2}$	
	If $d = \frac{1}{2}$; $a = 1$ and $S_{20} = 115$	
	If $d = -\frac{1}{2}$; $a = 5$ and $S_{20} = 5$	
Ans26	n = 21	4
	Middle most term = $\frac{21+1}{2}$ = 11 th	
	3 middle most terms are 10 th , 11 th , 12 th	
	$a_{10} + a_{11} + a_{12} = 129$	
	a+9d+a+10d+a+11d=129	
	a + 10d = 43 (1)	
	$a_{19} + a_{20} + a_{21} = 237$	
	a + 18d + a + 19d + a + 20d = 237	
	a + 19d = 79	
	on solving (1) and (2),	
	9d = 36	
	d = 4	
	a = 43 - 40 = 3	
Ans27	Let r_1 , r_2 be the radii of semicircles and L_1 , L_2 be the length of circumferences of semicircles, then	4
	$L_1 = \pi r_1 = \pi (1) = \pi \text{ cm}$	
	$L_2 = \pi r_2 = \pi (2) = 2\pi \ cm$	
	$L_3 = 3 \pi \text{ and }L_{11} = 11 \pi cm$	
	Total length of the spiral = $L_1 + L_2 + \cdots + L_{11} = \pi \left(\frac{11x12}{2} \right) = 207.24$ cm.	
Ans28	$S_1 = \frac{n}{2} [2a + (n-1)d]$	4
	$S_2 = \frac{2n}{2} [2a + (2n-1)d]$	
	$S_3 = \frac{3n}{3} [2a + (3n-1) d]$	
	$3 (S_2 - S_1) = 3 \left[\frac{2n}{2} \left\{ 2a + (2n-1) d \right\} - \frac{n}{2} \left\{ 2a + (n-1) d \right\} \right]$	
	$= 3 \left[\frac{n}{2} (2a + 3nd-d) \right]$	
	$=\frac{3n}{2}[2a+(3n-1)d]$	
	$=\overset{2}{S}_{3}$	
	*	ı


Test Paper Session 2017-18


CLASS 10 SUBJECT Mathematics CHAPTER- 6 Triangles

Ans	$25^2 = 24^2 + 7^2 = 625 = 576+49$ ∴ the given Δ form a right Δ form a right Δ	1
Q2.	AOB = <cod (v.o.a)<="" a=""> ABAD = <cda (alternate)<="" a=""> ∴ Δ A OB ~ ΔDOC (A A)</cda></cod>	1
Q3.	$\frac{AB}{DF} = \frac{BC}{EF} = \frac{AC}{ED} \Delta ABC \sim \Delta DFE S.S.S$ $< F = < B = 60^{\circ}$ $A = \frac{BC}{EF} = \frac{AC}{ED} \Delta ABC \sim \Delta DFE S.S.S$ $< F = < B = 60^{\circ}$ $A = \frac{12e}{6e} = \frac{4e}{6e}$ $A = \frac{12e}{6e} = \frac{4e}{6e}$ $A = \frac{12e}{6e} = \frac{4e}{6e}$	1
Q4.	XYIIBC $\Delta \text{ AXY} \sim \Delta \text{ ABC AA}$ $\therefore \frac{AX}{AB} = \frac{XY}{BC} = \frac{AY}{AC} \frac{1}{1+3} = \frac{XY}{6} \text{ XY} = \frac{6}{4} = \frac{3}{2} = 1.5 \text{cm}$	1
Ans5	Given A square ABCD and equilateral Δ BCE and Δ ACF on one side BC of square and diagonal aC respectively. To Prove : or Δ BCE = $\frac{1}{2}$ as Δ ACF Since each of Δ BCE and Δ ACF is an equilateral Δ so each angle of each of them is 60° Hence Δ BCE \sim Δ ACF $\frac{Ar}{ar}\frac{\Delta BCE}{ACF} = \frac{BC^2}{AC^2} = \frac{BC^2}{2(BC)^2} = \frac{1}{2}$ ar Δ BCE = $\frac{1}{2}$ ar Δ ACF	2
Ans6	Let AB and CD given vertically poles. Then AB = 6 cm, CD = 11m aC = 12m Draw BEIIAC then CE = AB = 6m, BE = AC = 12m DE = CD-CE = 11m - 6m = 5m Δ BED BD ² = BE ² + DE ² = 12 ² +5 ² = 144+25 BD = 13m	2

_		
Ans7	$\ln \Delta ABD = AB^2 = BD^2 + AD^2$	2
	$C^2 = (a + x)^2 + h^2$	
	$C^2 = a^2 + 2ax + x^2 + h^2$	
	$C^2 = a^2 + 2ax + h^2$	
	Therefore: $h^2 + x^2 = b^2$	
	of a	
	C /	
	1/6	
	D/ 1	
	DE A TC C XXX	
	Be a accard	
Ans8	ΔCBA Δ CDE	2
700	$\frac{c}{b+c} = \frac{x}{a}$	
	$b+c^-a$	
	ac ' · A	
	$X = \frac{ac}{b+c}$	
	6/14	
	D- B BC	
Ans9	$AB^2 = AC^2 + AC^2$	2
	$AB^2 = AC^2 + BC^2$	
	By converse of Pythagoras theorem Δ is right Δ .	
	B C.	
Ans10	Given Δ ABC ~ ΔDEF	2
	$\frac{ar \Delta ABC}{ar \Delta DEF} = \frac{BC^2}{EF^2}$	
	$9 BC^2 9 BC^2$	
	$\frac{1}{10} = \frac{1}{EF^2}$ $\frac{1}{16} = \frac{(4.2)^2}{(4.2)^2}$	
	$BC^{2} = \frac{9x4.2x4.2}{16}$ $BC = \frac{3x4.2}{4} = \frac{12.6}{4}$	
	DC = 3x4.2 = 12.6	
	$\frac{1}{4}$	
	= 3.15cm	
Ans11	∴ DE II BC	2
	<a common<="" is="" td=""><td></td>	
	<ade <abc="" =="" corresponding<="" td=""><td></td></ade>	
	Δ ADE~ ΔABC by AA	
	BC	
A = -10		
Ans12	AB = 12 cm, AD = 8 cm	2
	AE = 12 cm, AC = 18 cm	
	$\frac{AD}{AB} = \frac{AE}{AC}$ $\frac{8}{12} = \frac{12}{18} \longrightarrow \frac{2}{3} = \frac{2}{3}$	
	$\frac{AB}{8} = \frac{12}{12} \longrightarrow \frac{2}{2} = \frac{2}{2}$	
	12 18 3 3	
	AD AE	
	$\frac{AD}{AB} = \frac{AE}{AC}$	
A 15	By converse of BPT, DE II BC	
Ans13	Given ΔABC in which the bisector AD of <a bc="" d.<="" in="" meets="" td=""><td>3</td>	3
	To Prove $\frac{BD}{DC} = \frac{AB}{AC}$	
	I DC AC	

	2(<3+4) = 180	
	$<3 + <4 = 90^{\circ} < PQR = 90^{\circ}$	
Ans24	Given Δ ABC in which AD DB = 3CD	4
	To Prove $2AB^2 = 2AC^2 + BC^2$	
	Proof : Since DB = 3CD $\frac{DB}{CD} = \frac{3}{1}$	
	DB = 3x $CD = x$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{DB}{BC} = \frac{3x}{4x} = \frac{3}{4} \qquad DB = \frac{3}{4}BC$ $\frac{DC}{BC} = \frac{x}{4x} = \frac{1}{4} DC = \frac{1}{4}BC$	
	By Pythagoras theorem $AB^2 = AD^2 + BD^2$	
	$AB^2 = AD^2 + BD^2$	
	$= AC^2 - DC^2 + BD^2$	
	$AC^2 - \frac{1}{16}BC^2 + \frac{9}{16}BC^2$	
	$AC^2 + \frac{8}{16}BC^2$	
	$AC^2 + \frac{1}{2}BC^2$	
A no O E	$2AB^2 = 2AC^2 + BC^2$	1
Ans25	Given : ABC is right Δ , right angled at C, p is the length of perpendicular from C to AB	4
	Proopf : a) an $\triangle ABC = \frac{1}{x}X AB X CD$	
	2 m 1 9 C 2 9 A 19	
	b/	
	P. a	
	B	
	7 2- 0	
	$=\frac{1}{2}$ cp	
	also as \triangle aBC = $\frac{1}{2}$ AC X BC	
	$=\frac{1}{2}$ ba	
	$\frac{1}{2} \operatorname{cp} = \frac{1}{2} \operatorname{ba} \longrightarrow \operatorname{pc} = \operatorname{ab}$	
	$C = \frac{ab}{P}$	
	In ∆ ABC	
	$c^2 = a^2 + b^2$	
	$\left(\frac{ab}{p}\right) = a^2 + b^2$	
	$\frac{1}{P^2} = \frac{a^2 + b^2}{a^2 b^2} = \frac{a^2}{a^2 b^2} + \frac{b^2}{a^2 b^2}$	
	$\frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$	
Ans26	Given Δ ABC~ ΔDEF, AP and DQ are the medians of ΔABC and ΔDEF respectively.	4
	To prove $\frac{ar \Delta ABC}{ar \Delta DEF} = \frac{AP^2}{DQ^2}$	
	$ar \Delta DEF DQ^2$ Proof : AP and DQ are medians	
	∴ BP = PC and EQ = QF	
	Given Δ ABC~ Δ DEF	
	$= \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} < A = $	
	$\langle C = \langle F \rangle$ $AB BC AB 2BP BP$	
	$\frac{AB}{DE} = \frac{BC}{EF} \longrightarrow \frac{AB}{DE} = \frac{2BP}{2EQ} = \frac{BP}{EQ}$	
	<b <e<="" =="" td=""><td></td>	
	Δ ABP ~ ΔDEQ SAS	
	$\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2}$	
	DEF DE ² ∴ the ratio of areas of two similar Δs is ratio of squares of their corresponding side from 1 and 2	

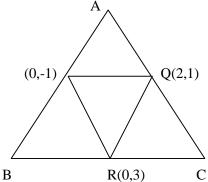
	cmAADC AD2	
	$\frac{ar\Delta ABC}{ar\Delta DEE} = \frac{AP^2}{DQ^2}$	
Ans27	Given: \triangle ABC and \triangle PQR in which AD and PS are the medians such that $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PS}$ To prove: \triangle ABC \sim \triangle PQR Construction: Produce AD to E such that AD = DE join EC. Also produce PS to T such that PS = ST joint TR	4
	In Δ ABC and ΔECD we have	
	BD = DC (D is mid point of BC as AD is median) <5 = <6	
	AD= DE construction $ \Delta ABD \cong \Delta ECD \longrightarrow AB = EC (Cpct) (i) $ Similarly $\Delta PQS \cong \Delta TRS$	
	$PQ = TR$ $Since \frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PS} $ (ii) $\frac{EC}{TR} = \frac{AC}{PR} = \frac{2AD}{2PS}$	
	$\frac{EC}{TR} = \frac{AC}{PR} = \frac{AE}{PT} \Delta \text{ AEC} \sim \Delta \text{PTR} < 1 = <2$ (Corresponding angle of similar Δ are equal) Similarily $< 3 = <4$ $< 1 + < 3 = <2 + <4$ $< A = < P$	
	Now in \triangle ABC and \triangle PQR $\frac{AB}{PQ} = \frac{AC}{PR}$ $< A = < P$	
	ΔABC ~ ΔPQR (SAS)	
Ans28	B C	4
	In Δs BMC and DME	
	<1 = 2 alternate is as BCII DE	
	CM = DM • M is mid point of DC)	
	$\therefore M \text{ is mid point of DC} $ $<3 = <4 \text{ (V.O.A)}$	
	$\triangle BMC \cong \triangle EMB ASA$	
	BC = ED	
	BC = AD	
	2BC = DE + AD = AE	
	$\frac{BC}{AE} = \frac{1}{2}$	
	Now in Δ BCL and ΔEAL	

```
<5 = <6 alernate

<7 = <8

\Delta BCL \sim \Delta EAL

\frac{BC}{EA} = \frac{BL}{EL}


\frac{1}{2} = \frac{BL}{EL} \longrightarrow EL = 2BL
```

THE ASIAN SCHOOL, DEHRADUN Test Paper Session 2017-18 CLASS 10SUBJECT: Mathematics CHAPTER- 7 Coordinate Geometry

	CLASS 1050BJECT: Mathematics CHAPTER- 7 Coordinate Geometry	
Ans1	(K, 2K) (3K, 3K) (3,1)	1
	K(3k-1) + 3K(1-2K) + 3(2K-3K) = 0	
	On solving	
	K = -1/3	
Ans2	-1	1
Ans3	0	1
Ans4	C	1
Ans5		2
Aliso	$x = \frac{3+14}{3} = \frac{17}{3} \text{Ans: quadrant IV}$	2
	$y = \frac{4-12}{3} = \frac{-8}{3}$	
Ans6	(0,-1)	2
Ans7	$\frac{a}{3} = \frac{-2-6}{2}$	2
	$\begin{vmatrix} 3 & 2 \\ a & = -12 \end{vmatrix}$	
Ans8	(8,1) (k,-4) (2,-5)	2
Aliso	$\begin{cases} (6,1)(k,-4)(2,-5) \\ 8(-4+5) + k(-5-1) + 2(1+4) = 0 \end{cases}$	2
	8 - 6k + 10 = 0	
	$\begin{array}{c} 8 - 6 K + 10 = 0 \\ K = 3 \end{array}$	
A := = O		
Ans9	Let ratio be k: 1	2
	$\frac{-2}{7} = \frac{2k-2}{k+1}$	
	-2 k - 2 = 14 k - 14	
	12 = 16k	
	k = 3.4	
Ans10		2
7111010	$\frac{x-\frac{1}{1+2}-\frac{1}{3}}{1+2} = \frac{1}{3}$ Form (-1/3,0)	-
Ans11	Let A=(1,2), B=(1,0),C=(4,0),D=(a,b)	2
Allsti		2
	(1+4 2+0)	
	M.P. of AC = $\left(\frac{1+4}{2}, \frac{2+0}{2}\right)$	
	M.P. of BD = $\left(\frac{a+1}{2}, \frac{b+0}{2}\right)$	
	∴on comparing $a = 5$; $b = 2$	
1 10	Point D (5,2)	
Ans12	Same as answer 12	2
Ans13	Let ratio be K: 1	
	$0 = \frac{3k-2}{k+1} :: K = 2/3$	
	Ratio = 2.3	
Ans14	Ratio = 2:3 PQ	
Alista		
	$(x,2x)$ $\sqrt{10}$ $(2,3)$	
	$PQ = \sqrt{10}$	
	$\sqrt{(x-2)^7 + (2x-3)^2} = \sqrt{10}$	
	Squaring and solving	
	$5x^2 - 16x + 3 = 0$	
	(5x-1)(x-3)=0	
	x = 1/5; $x = 3$	
Ans16	P = (2,5) Q = (x, -3) R = (7,9)	
	PQ = QR	
	$\sqrt{(x-2)^2 + (-3-5)^2} = \sqrt{(7-x)^2 + (9+3)^2}$	
	Squaring both sides and solving;	
	10x = 49 + 144 - 4 - 64	
	10x = 125	
	x = 25/2	
Ans17	Let point P is equidistant from A(3,2) and B (3,-2)	

1	$\sqrt{(x-3)^2+(y-2)^2}=\sqrt{(x-2)^2+(y+3)^2}$	
	$x^2 + 9-6x + y^2 + 4 - 4y = x^2 + 4-4x + y^2 + 9+6y$	
	on simplifying	
	x + 5y = 0	
Ans18	A K P 1 B	
711310	(-3,5) $(2,-5/6)$ $(3,-2)$	
	By section F	
	$2 = \frac{3k-3}{k+1}$	
	5 = k	
	K = 5/1: Ratio is 5 : 1	
Ans19	Area is zero: hence	
	$\frac{1}{2} \left[2(k-10) + 5(10-4) + 3(4-k) = 15 \right]$	
	2 k - 10 + 30 + 12 - 3k = 30	
	-k = 30 - 30 + 8	
	K = -8	
Ans20	Let point P(x,y) is equidistant from A(3,2) and B (3,-2) implies PA=PB	
	$\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x-3)^2 + (y-4)^2}$	
	$x^2 + 9 - 6x + y^2 + 36 - 12y = x^2 + 9 + 6x + y^2 + 16 - 8y$	
	-12x - 4y = 25 - 45	
	-12x - 4y = -20	
	3x + y = 5	
Ans21	Let ratio be K: 1	
	A K P 1 B	
	(-3,1) $(-6,9)$ $(-8,9)$	
	$-6 = \frac{-8k-3}{k+1}$	
	6 k + 6 = 8 k + 3	
	K = 3/2	
	Ratio = 3: 2	
	$\frac{27}{1} + 1$ 20	
	$a = \frac{9k+1}{k+1}$ implies $a = \frac{\frac{27}{2}+1}{\frac{3}{2}+1} = \frac{29}{5}$	
	$\frac{1}{2}$	
Ans22	1(7-1)-4(1-2)+k(2-7)=0	
	6 + 4 - 5k = 0	
1		
	K=2	
Ans23		
Ans23	K = 2 Let ratio be K: 1	
Ans23	K = 2 Let ratio be $K : 1$	
Ans23		
Ans23		
Ans23		
Ans23	$K = 2$ Let ratio be K: 1 $A K 1 B$ $(1,3) (x,y) (2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$	
Ans23	$K = 2$ Let ratio be K: 1 $A K 1 B (1,3) (x,y) (2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$	
Ans23	$K = 2$ Let ratio be K: 1 $A K 1 B$ $(1,3) (x,y) (2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$	
Ans23	$K = 2$ Let ratio be K: 1 $A K 1 B$ $(1,3) (x,y) (2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$	
Ans23	Let ratio be K: 1 A K 1 B $(1,3)$ (x,y) $(2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$	
Ans23	$K = 2$ Let ratio be K: 1 $A K 1 B$ $(1,3) (x,y) (2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$	
Ans23	Let ratio be K: 1 A K 1 B $(1,3)$ (x,y) $(2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$	
	Let ratio be K: 1 A	
Ans24	Let ratio be K: 1 A K 1 B $(1,3)$ (x,y) $(2,7)$ $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3x + y - 9 = 0$ $3(\frac{2K+1}{K+1}) + (\frac{7K+3}{K+1}) - 9 = 0$ $6k + 3 + 7K + 3 - 9 - 9k = 0$ $4k = 9 - 3 - 3$ $4k = 3$ $K = \frac{3}{4}$ Ratio = 3: 4	
Ans24	Let ratio be K: 1 A K 1 B (1,3) (x,y) (2,7) $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$ $K = \frac{3}{4} \text{ Ratio} = 3: 4$ Similar to question no. 20	
Ans24	Let ratio be K: 1 A	
Ans24	Let ratio be K: 1 A K 1 B (1,3) (x,y) (2,7) $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$ $K = \frac{3}{4} \text{ Ratio} = 3: 4$ Similar to question no. 20	
Ans24	Let ratio be K: 1 A K 1 B (1,3) (x,y) (2,7) $x = \frac{2k+1}{k+1} y = \frac{7k+3}{k+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2k+1}{k+1}\right) + \left(\frac{7k+3}{k+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$ $K = \frac{3}{4} \text{ Ratio} = 3:4$ Similar to question no. 20	
Ans24	Let ratio be K: 1 A K 1 B (1,3) (x,y) (2,7) $x = \frac{2k+1}{K+1} y = \frac{7k+3}{K+1}$ $3 x + y - 9 = 0$ $3 \left(\frac{2K+1}{K+1}\right) + \left(\frac{7K+3}{K+1}\right) - 9 = 0$ $6 k + 3 + 7 K + 3 - 9 - 9 k = 0$ $4k = 9 - 3 - 3$ $4 k = 3$ $K = \frac{3}{4} \text{ Ratio} = 3: 4$ Similar to question no. 20	

By MPF $0 = \frac{a+0}{2}, 0 = \frac{b-3}{2}$ a = 0; b = 3point B (0,3) BC = 6 AB = 6 $\sqrt{(P-0)^2 + (0-3)^2} = 6$ $P^2 + 9 = 36$ $P = 3\sqrt{3}$ Point: A (3 $\sqrt{3}$,0)

Area of
$$\triangle PQR = \frac{1}{2} [0 (1-3) + 2 (3+1) + 0 (-1-1)]$$

= $\frac{1}{2} (-2+8) = 3$
Area of $\triangle ABC = 4 x$ area of PQR
= $4 \times 3 = 12$ sq. units

THE ASIAN SCHOOL, DEHRADUN Test Paper Session 2017-18 SUBJECT Mathematics C

CLASS 10 **CHAPTER- 8 & 9**

	CLASS 10 SUBJECT IVIATION CHAPTER- 8 & 9	
Ans1	tan A +tanB	1
	cot A + Cot B	
	$= \underline{\tan A + \tan B}$	
	tan A tan B	
	$= \tan A + \tan B$	
	(tan B + tan A)tan A tan B	
	= tan A tan B	1
Ans2	$\frac{\tan A + \sec A - 1}{\sin A + \sin A}$	1
	tanB + Sec A + 1	
	$= \underline{\tan A + \operatorname{Sec} A - (\operatorname{Sec}^2 A - \tan^2 A)}$	
	$Tan A - Sec A + 1$ $= (Sec A + tan A) \begin{bmatrix} 1 & Sec A + tan A \end{bmatrix}$	
	$= \underbrace{(\operatorname{Sec} A + \tan A) \left[1 - \operatorname{Sec} A + \tan A\right]}_{(\tan A - \operatorname{Sec} A + 1)}$	
	$\begin{array}{c c} (tan A - Sec A + 1) \\ 1 SinA \end{array}$	
	$=\frac{1}{10000} + \frac{1}{10000}$	
	$= \frac{1+\sin A}{1+\sin A}$	
	cosA	
Ans3	tanA cotA	1
11133	$\frac{1-cotA}{1-cotA} + \frac{1-cotA}{1-cotA}$	'
	ain A cos A	
	$\begin{array}{c c} \underline{sinA} & \underline{cosA} \\ \underline{-cosA} & \underline{+} & \underline{sinA} \end{array}$	
	$\frac{1-\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}} + \frac{\sin A}{1-\frac{\sin A}{\cos A}}$	
	3607	
	$\frac{\sin A}{a}$ $\frac{\cos A}{\sin A}$	
	$\frac{\cos A}{\sin A - \cos A} + \frac{\sin A}{\cos A - \sin A}$	
	$\begin{array}{c c} \hline sinA & \hline cos A \\ \hline sin^2 A & cos^2 A \\ \hline \end{array}$	
	$= \frac{Stt \ A}{CosA(SinA-cosA)} + \frac{Cos \ A}{SinA(cosA-sinA)}$	
	sin^2A cos^2A	
	$= \frac{1}{CosA(SinA - cosA)} - \frac{1}{SinA(sinA - cosA)}$ $= \frac{1}{Sin^3A - Cos^3A}$	
	$\overline{\cos A} \sin A (\sin A - \cos A)$	
	$\frac{(SinA-CosA)(Sin^2A+Sin^2A+SinACosA)}{}$	
	cosA sin A (SinA-cosA) 1+sin A cosA	
	$= \frac{1+\sin A \cos A}{\cos A \sin A}$	
	= Sec A cosec A + 1	
	$= \frac{\sin^2 A}{\cos A \sin A} + \frac{\cos^2 A}{\cos A \sin A} + \frac{\sin A \cos A}{\sin A \cos A}$	
	cosAsinA cosAsinA SinA cosA	
	= tan A + cotA + 1	
Ans4	(1+ cotA – cosecA) (1+tan A + SecA)	1
	1 + tan A + Sec A + cot A+ cot A tan A + cot A sec A- cosec A - cosec A tan A - cosec A sec A	
	$1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A} + \frac{\cos A}{\sin A} + 1 + \frac{\cos A}{\sin A} \times \frac{1}{\sin A} - \frac{1}{\sin A} \times \frac{\sin A}{\cos A} - \frac{1}{\sin A} \times \frac{1}{\cos A}$	
	Som Som Som Som Som Som Cost State Cost	
	$2 + \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} - \frac{1}{\sin A \cos A}$	
	cosA SinA sinA cosA	
	$\sin^2 A \log^2 A$ 1	
	$2 + \frac{\sin^2 A + \cos^2 A - 1}{\sin A \cos A}$ $= 2 + \frac{1 - 1}{\sin A \cos A}$	
	$=2+\frac{1-1}{1-1}$	
	SinA cosA	
	2+0	
	= 2	

Ans5	$\tan^2 A + \cot^2 A + 2$	2
	$Sec^2 A-1 + cosec^2 A - 1 + 2$	
	$\operatorname{Sec}^2 A + \operatorname{cosec}^2 A$	
	$=\frac{1}{\cos^2 A} + \frac{1}{\sin^2 A}$	
	$\cos^2 A = \sin^2 A$	
	$=\frac{\sin^2 A + \cos^2 A}{\sin^2 A \cos^2 A}$	
	sin^2Acos^2A	
	$=\frac{1}{\sin^2 A \cos^2 A}$	
	$Sin^2A\cos^2A$	
	$= \csc^2 A \operatorname{Sec}^2 A$	
Ans6	$(SecA-tanA)^2+1$	
	cosecA (SecA-tanA)	
	$Sec^2A + tan^2A - 2 Sec A tan A + 1$	
	cosec A (sec A-tanA)	
	$2Sec^2A - 2\sec A \tan A$	
	cosec A (sec A - tan A)	
	$=\frac{2Sec\ A\ (Sec\ A-\tan A)}{1}$	
	$= \frac{2 \cos A (\cos A - \tan A)}{\cos A - \tan A}$	
	$= 2 \tan A$	
Ans7	SinA-SinB cosA-cosB	
, 11137	$\frac{1}{CosA + cosB} + \frac{1}{Sin A + Sin B}$	
	$\frac{SinA-SinB}{CosA+cosB} + \frac{cosA-cosB}{SinA+SinB} Sin^2A-Sin^2B + Cos^2A-Cos^2B$	
	$\frac{CosA + cosB)}{(CosA + cosB)} (Sin A + SinB)$	
	1-1	
	(cosA+cosB)(Sin A+SinB)	
	= 0	
Ans8	$(CosA + Sec A)^2 + (SinA + cosec A)^2$	
Aliso		
	$\cos^2 A + \sec^2 A + 2\sec A \cos A + \sin^2 A + \csc^2 A + 2\sin A \csc A$	
	$1 + 2 + 2 + Sec^2 A + cosec2A$	
	$5 + \tan^2 A + 1 + \cot^2 A + 1$	
	$7 + \tan^2 A + \cot^2 A$	
Ans9	$\frac{\cot A}{\cot A} + \frac{\csc A+1}{\cot A}$	
7 11 10 7	COSEC A+1 COTA	
	$\cot^2 A + \csc^2 A + 1 + 2 \csc A$	
	$\cot A (cosec A+1)$	
	$2 \operatorname{cosec}^2 A + 2 \operatorname{cosec} A$	
	$\frac{\cot A (cosec A+1)}{\cot A (cosec A+1)}$	
	2 cosec A (cosec A+1)	
	$\cot A (cosec A+1)$	
	= 2 sec A	
Ans10	$(Sin A + Sec A)^2 + (CosA + CosecA)^2$	
7 11.10 . 0	$\sin^2 A + \sec^2 A + 2\sin A \sec A + \cos^2 A + \cos C + \cos C$	
	$1 + Sec^2 A + 2 tan A + cosec^2 A + 2 cot A$	
	$1 + \frac{1}{\cos^2 A} + \frac{1}{\sin^2 A} + \frac{2\sin A}{\cos A} + \frac{2\cos A}{\sin A}$	
	$1 \cdot Sin^2A + cos^2A \cdot 2Sin^2 + 2cos^2A$	
	$\frac{1+\overline{Sin^2A\cos^2A}}{Sin^2A\cos^2A} + \overline{Sin^2A\cos^2A}$	
	$1 + \frac{\sin^{2}A + \cos^{2}A}{\sin^{2}A \cos^{2}A} + \frac{2\sin^{2} + 2\cos^{2}A}{\sin^{2}A \cos^{2}A} + \frac{2\sin^{2} + 2\cos^{2}A}{\sin^{2}A \cos^{2}A} + \frac{2}{\sin^{2}A \cos^{2}A} + \frac{2}{\sin^{2}A \cos^{2}A}$	
	$\int \int \frac{1}{\pi} \frac{1}{\sin^2 A \cos^2 A} + \frac{1}{\sin A \cos A}$	
	1 + (Sec A cosec A) ² + 2 sec A cosec A	
	$(1 + \operatorname{Sec} A \operatorname{cosec} A)^2$	
Ans11	$\frac{SinA}{1-cosA} + \frac{tanA}{1+cosA}$	
	1-cosA 1+cosA	
	$\frac{SinA}{1-cosA} + \frac{SinA}{cosA(1+cosA)}$	
i	$\frac{1-\cos A}{\cos A} \cos A(1+\cos A)$	
		İ
	sinAcosA(1+cosA) + SinA(1-cosA)	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$	
	sinAcosA(1+cosA) + SinA(1-cosA)	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$ $sinAcosA + sinAcos^2A + sinA - sinAcosA$	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$ $\frac{sinAcosA + sinAcos^2A + sinA - sinAcosA}{(1-cosA)(1+cosA)cosA}$	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$ $\frac{sinAcosA + sinAcos^2A + sinA - sinAcosA}{(1-cosA)(1+cosA)cosA}$ $\frac{sinA(1+cos^2A)}{(1+cos^2A)}$	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$ $\frac{sinAcosA + sinAcos^2A + sinA - sinAcosA}{(1-cosA)(1+cosA)cosA}$ $\frac{sinA(1+cos^2A)}{sin^2AcosA}$	
	$\frac{sinAcosA(1+cosA) + SinA(1-cosA)}{(1-cosA)(1+cosA)cosA}$ $\frac{sinAcosA + sinAcos^2A + sinA - sinAcosA}{(1-cosA)(1+cosA)cosA}$ $\frac{sinA(1+cos^2A)}{(1+cos^2A)}$	

```
\frac{1}{\sin A \cos A} + \frac{\cos^2 A}{\sin A \cos A}
Sec A cosecA + cotA

Ans12 (cosecA- SinA) (secA - cosA)
\left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right)
\frac{1-\sin^2 A}{\sin A} \times \frac{1-\cos^2 A}{\cos A}
\frac{\cos^2 A}{\sin A} \times \frac{\sin^2 A}{\cos A}
Sin A cos A
RHS:
\frac{1}{\tan A + \cot A}
\frac{\sin A}{\cos A} + \cos A
\frac{\sin A}{\sin A} \cos A
= \frac{\sin A \cos A}{\sin A \cos A} = \sin A \cos A
```

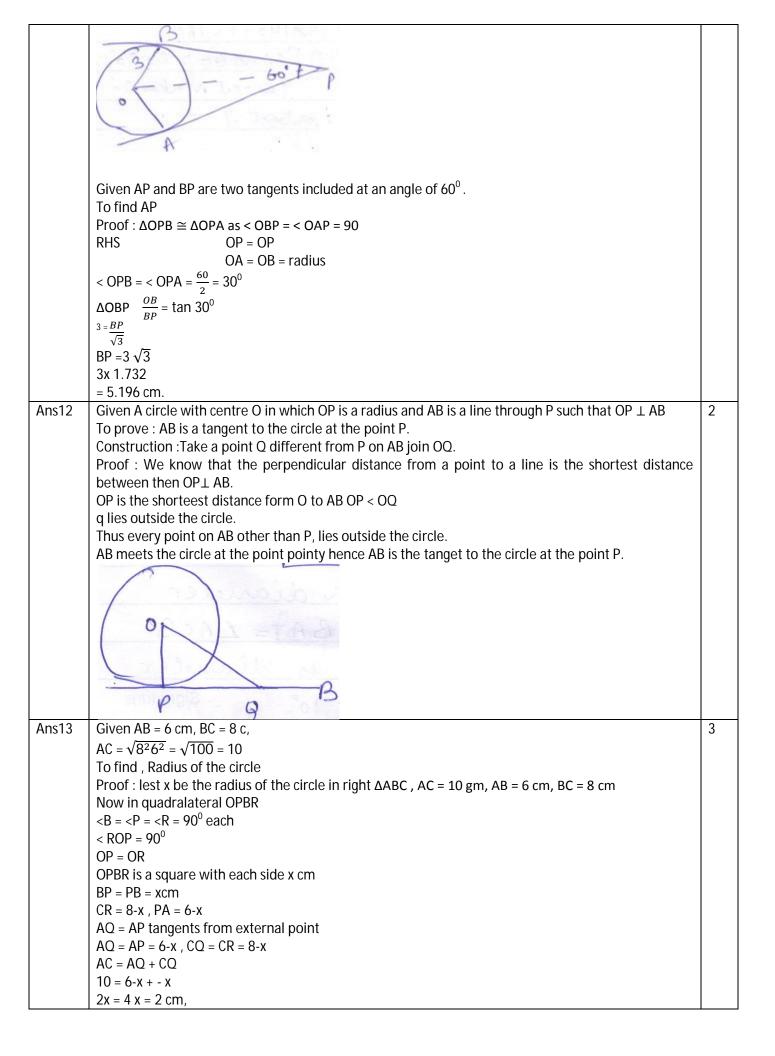
```
\frac{\cot 58}{\tan 32} + \frac{\cos 59}{\sin 31} + \sin^2 50 + \sin^2 40 - 8 \sin^2 30
\frac{\cot (90-32)}{\tan 32} + \frac{\cos (90-31)}{\sin 31} + \sin^2 (90-40) + \sin^2 40 - 8 \times (1/2)^2
\frac{\tan 32}{\tan 32} + \frac{\sin 31}{\sin 31} + \cos^2 40 + \sin^2 40 - 2
Ans13
                 = 1+1+1-2
                 Sec^{2}32 - \cot^{2}58 + \frac{\cot 15}{\tan 75} - \frac{\cos 27}{\sin 63} + 2\sin^{2}45
Ans14
                 Sec^{2}(90-58) - \cot^{2}58 + \frac{\cot{(90-75)}}{\tan{75}} - \frac{\cos{(90-63)}}{\sin{63}} + 2 \times \left(\frac{1}{\sqrt{2}}\right)^{2}
                 Cosec^{2}58 - \cot^{2}58 + \frac{tan75}{tan75} - \frac{sin63}{sin63} + 1
                  = 1+1-1+1
                 = 2
                 \frac{\sin 40}{\cos^2 \pi} + \frac{\sec^2 35}{\cos^2 \pi} + \tan 20 \tan 40 \tan 45 \tan 50 \tan 70
Ans15
                 \frac{\cos 50}{\cos 50} + \frac{\cos 2}{\cos 255} + \tan 20 \tan 40 \tan 45 \tan 50 \tan 70
\frac{\sin (90-50)}{\cos 50} + \frac{\sec^2 (90-55)}{\cos 255} + \tan (90-70) \tan (90-50). 1. tan50 tan 70
                 \frac{cos50}{cos50} + \frac{cosec^255}{cosec^255} + \cot 70 \cot 50 \tan 50 \tan 70
                  1+1+1
                  = 3
                 \label{eq:sin265+Sin222+tan10} \sin^2\!65 + \sin^2\!62 + \tan 10 \tan 25 \tan 60 \tan 65 \tan 80 + \frac{\sin 70}{\cos 20} + \frac{\sec^2 65}{\csc^2 25}
Ans16
                 \sin^2(90-22) + \sin^2(22) + \tan(90-80) \tan(90-65) \sqrt{3} \tan 65 \tan 80 + \frac{\sin(90-20)}{2} + \frac{\sec^2(90-25)}{2}
                 \cos^2 22 + \sin^2 22 + \cot 80 \cot 65. \sqrt{3}. Tan65 \tan 80 + \frac{\cos 20}{\cos 20} + \frac{\csc^2 25}{\csc^2 25}
                  = 1 + \sqrt{3} + 1 + 1
                 = 3 + \sqrt{3}
Ans17
                         a) Cos(20+x) = sin 60
                                 Cos(20+x) = cos30
                                 20 + x = 30
                                 x = 10
                         b) 2 \sin (3x-15) = \sqrt{3}
                                 Sin(3x-15) = \frac{\sqrt{3}}{2}
                                  Sin(3x-15) = sin 60
                                  3x-15 = 60
                                 x = 25
                                  tan<sup>2</sup> (25+5) + sin<sup>2</sup> (2x25+10)
```

	$tan^230 + sin^260$	
	$= 3 + \frac{3}{4}$	
	= 15/4	
Ans18	m+n = 2tanA	`
	$m - n = 2 \sin A$	
	(m+n) (m-n) = 2tanA 2 sinA	
	$m^2-n^2=4 \tan A \sin A$	
	$4\sqrt{m}$ n	
	$=4 \sqrt{(sinA + tanA)(tanA - sinA)}$	
	$4\sqrt{\tan^2 A - \sin^2 A}$	
	sin^2A	
	$4\sqrt{\frac{\sin^2 A}{\cos^2 A}} - \sin^2 A$	
	$4\sqrt{\sin^2A\left(\frac{1}{\cos^2A}-1\right)}$	
	$4\sqrt{Sth^2A}\left(\frac{1}{\cos^2A}-1\right)$	
	$4\sqrt{\sin^2 A\left(\frac{1-\cos^2 A}{\cos^2 A}\right)}$	
	$4\sqrt{Sth^2A}\left(\frac{1}{\cos^2A}\right)$	
	$4\sqrt{\frac{\sin^4 A}{\cos^2 A}}$	
	$=4\frac{\sin^2 A}{\cos^2 A}$	
1 10	= 4 tan A sin A	
Ans19	a) $3\cos^2 A + 7\sin^2 A = 4$	
	$3\cos^2 A + 3\sin^2 A + 4\sin^2 A = 4$	
	$3 (\cos^2 A + \sin^2 A) = 4 - 4 \sin^2 A$	
	$3 = 4 (1 - \sin^2 A)$	
	$^{3}4 = \cos^{2}A$	
	$\sqrt{3}$	
	$\cos A = \frac{\sqrt{3}}{2}$	
	$tan A = \sqrt{3}$	
	b) $(\cos A + \sin A)^2 = (\sqrt{2} \cos A)^2$	
	$\cos^2 A + \sin^2 A + 2 \sin A \cos A = 2 \cos^2 A$	
	$1+2 \sin A \cos A = 2\cos^2 A$	
	$2 \sin A \cos A = 2 \cos^2 A$	
	= ****** = *** * * *	
	Now, $(\cos A - \sin A)^2 = \cos^2 A + \sin^2 A - 2 \sin A \cos A$	
	$(\cos A - \sin A)^2 = 1-2 \sin A \cos A$	
	$(\cos A - \sin A)^2 = 1-2\cos^2 A + 1$	
	$(\cos A - \sin A)^2 = 2 - 2 \cos^2 A$	
	$(\cos A - \sin A)^2 = 2 (1 - \cos^2 A)$	
	$(\cos A - \sin A)^2 = 2\sin^2 A$	
	$(\cos A - \sin A) = \sqrt{2} \sin A$	
	$(\cos A - \sin A) - \sqrt{2} \sin A$	
Apc20	V ² ² ²	
Ans20	$X^2+y^2+z^2$	
	$= r^{2} \sin^{2} A \cos^{2} B + r^{2} \sin^{2} A \sin^{2} B + r^{2} \cos^{2} A$	
	$=r^2 \sin^2 A (\cos^2 B + \sin^2 B) + r^2 \cos^2 A$	
	$= r^2 \sin^2 A + r^2 \cos^2 A$	
	$= r^2 (\sin^2 A + \cos^2 A)$	
	$= r^2$	
Ans21	Tan $45 = \frac{h}{x}$	
	h = x	
	$\tan 30 = \frac{h}{10+x}$ h	
	1 h	
	$\frac{1}{\sqrt{3}} = \frac{h}{10+h}$ 45 30	
	$10+h = \sqrt{3}h$ 10 x	
	$10 = \sqrt{3}h - h$	
	$10 = (\sqrt{3} - 1) h$	

	h 10	
	$h = \frac{10}{\sqrt{3-1}}$	
	$h = \frac{10}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$	
	$h = 10(\sqrt{3}+1)$	
	$ 11 = {3-1} \\ 10(173+1) $	
	$h = \frac{10(\sqrt{3}+1)}{3-1}$ $h = \frac{10(1.73+1)}{2}$	
	$h = \frac{27.3}{2} = 13.65 m$	
Ans22		
	$y = \frac{15x}{60X60}km$	
	tan 45 = 3000/2	
	z = 3000 m = 3 km.	
	120 3	
	$tan 30 = \frac{1}{y+z}$ 3000	
	$\frac{1}{\sqrt{3}} = \frac{3}{y+3}$	
	$V+3 = 3\sqrt{3}$	
	$y = 3\sqrt{3}-3$	
	$\frac{15x}{60 \times 60} = 3\sqrt{3}-3$ Z	
	$3(\sqrt{3}-1)X60X60$	
	$X = \frac{3(\sqrt{3} - 1)X60X60}{15}$	
	$X = \frac{3600}{5} (1.73-1)$	
	$x = 720x \ 0.73$	
	x = 525.6 km/hr	
Ans23	90	
	$\tan 60 = \frac{90}{x}$ $\sqrt{3} = \frac{90}{x}$ $x = \frac{90}{\sqrt{3}}$ 90-h	
	$\sqrt{3} = \frac{90}{r}$	
	$\chi = \frac{90}{2}$	
	$\tan 30 - \frac{90-h}{}$	
	$\frac{1}{\sqrt{3}} = \frac{90 - h}{90/\sqrt{3}}$	
	90 = 3(90-h)	
	60= 90-h	
	h = 30 m	
Ans24	$\tan 60 = \frac{h}{x}$	
	$x = \frac{h}{x}$	
	$X = \frac{h}{\sqrt{3}}$ $h = 45$	
	$\tan 30 = \frac{h-45}{x}$	
	$\frac{1}{\sqrt{3}} = \frac{h - 45}{h/\sqrt{3}}^{\chi} $ 45	
	h = 3 (h-45)	
	h = 3h – 135	
	$h = \frac{135}{2} = 67.5 \text{ m}.$	
Ans25		
	$\tan 60 = \frac{h}{x}$	
	$h = x \sqrt{3}$	
	100 h	
	$\tan 30 = \frac{h}{x+50}$ \frac{30}{50} \frac{60}{x}	
	1 7 7	
	$\frac{1}{\sqrt{3}} = \frac{x\sqrt{3}}{x+50}$	
	x + 50 = 3x	
	(i) $x = 25 \text{ m}$	
	(ii) $h = 25\sqrt{3} \text{ m}$	

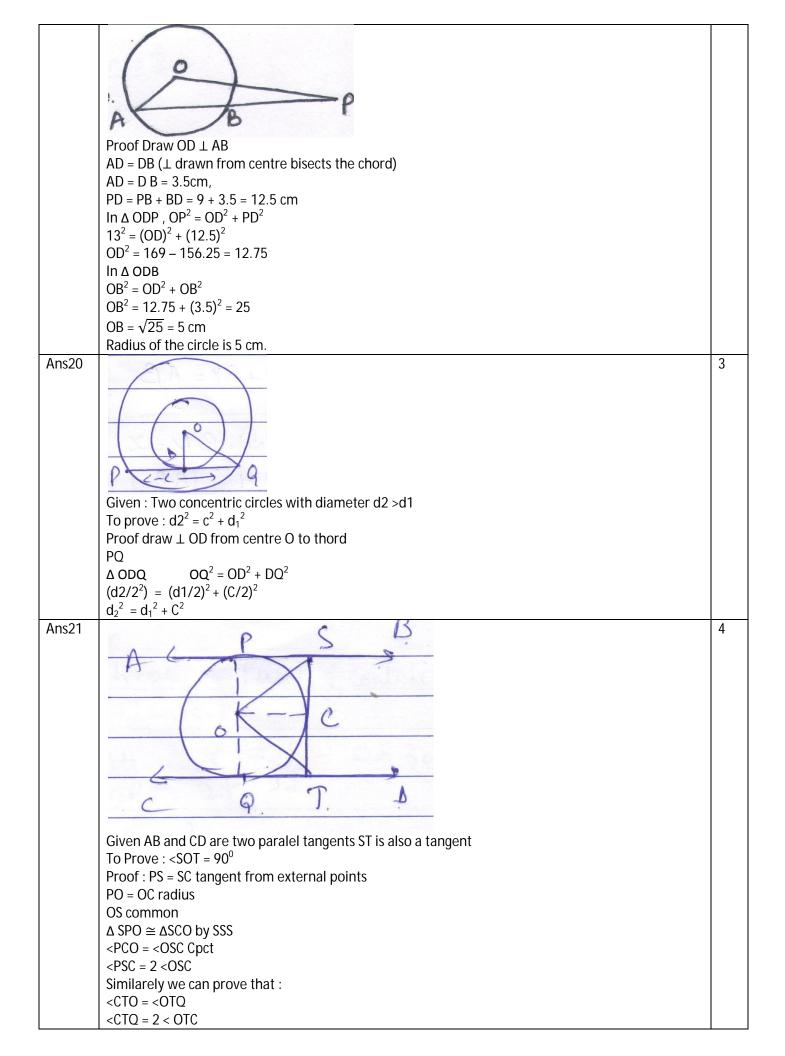
Ans26 $\tan 60 = \frac{88.2}{\sqrt{3}} \times \tan 30 = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2}{\sqrt{3}} \times x = \frac{88.2 \times 3}{\sqrt{3}} \times x = \frac{88.2 \times 3}{\sqrt{3}} \times x = \frac{176.4 \times 3}{\sqrt{3}} \times x = 176$	Ans26		
$\sqrt{3} = \frac{88.2}{x}$ $x = \frac{88.2}{\sqrt{3}}$ $\tan 30 = \frac{88.2}{x+y}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2} \times \frac{3}{\sqrt{3}}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2} \times \frac{3}{\sqrt{3}}$ $\frac{1}{\sqrt{3}} = \frac{88.2 \times 3}{88.2 \times 3}$ $\sqrt{3}y + 88.2 = 88.2 \times 3$ $\sqrt{3}y + 88.2 = 88.2 \times 3$ $\sqrt{3}y = \frac{176.4 \times \sqrt{3}}{3}$ $y = \frac{196.4 \times \sqrt{3}}{3}$ y	7 11 10 2 0		
$\sqrt{3} = \frac{88.2}{x}$ $x = \frac{88.2}{\sqrt{3}}$ $\tan 30 = \frac{88.2}{x+y}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2} \times \frac{3}{\sqrt{3}}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{88.2} \times \frac{3}{\sqrt{3}}$ $\frac{1}{\sqrt{3}} = \frac{88.2 \times 3}{88.2 \times 3}$ $\sqrt{3}y + 88.2 = 88.2 \times 3$ $\sqrt{3}y + 88.2 = 88.2 \times 3$ $\sqrt{3}y = \frac{176.4 \times \sqrt{3}}{3}$ $y = \frac{196.4 \times \sqrt{3}}{3}$ y		$\tan 60 = \frac{88.2}{x}$	
$\tan 30 = \frac{88.2}{x+y}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{80.2} \frac{30.2}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{88.2 \sqrt{3}}{80.2 + \sqrt{3}y}$ $\sqrt{3} y + 88.2 = 88.2 x3$ $\sqrt{3} y + 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4 x \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h - 100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $100 \sqrt{3} = \sqrt{3} \ln \frac{100 \sqrt{3}}{\sqrt{3} - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) \text{m}$ $x = h = 50 (3 + \sqrt{3}) \text{m}$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$		$\sqrt{3} = \frac{88.2}{2}$	
$\tan 30 = \frac{88.2}{x+y}$ $\frac{1}{\sqrt{3}} = \frac{88.2}{80.2} \frac{30.2}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{88.2 \sqrt{3}}{80.2 + \sqrt{3}y}$ $\sqrt{3} y + 88.2 = 88.2 x3$ $\sqrt{3} y + 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4 x \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h - 100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $100 \sqrt{3} = \sqrt{3} \ln \frac{100 \sqrt{3}}{\sqrt{3} - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) \text{m}$ $x = h = 50 (3 + \sqrt{3}) \text{m}$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} \ln h - 100 \sqrt{3}$		$X = \frac{88.2}{30}$	
$\frac{1}{\sqrt{3}} = \frac{88.2}{\frac{88.2}{\sqrt{3}}} \times \frac{1}{\sqrt{3}} = \frac{88.2 \sqrt{3}}{\frac{38.2 + \sqrt{3}y}{\sqrt{3}}} \times \frac{38.2 + \sqrt{3}y}{\frac{38.2 + \sqrt{3}y}{\sqrt{3}}} \times \frac{38.2 + \sqrt{3}y}{\frac{38.2 + \sqrt{3}y}{\sqrt{3}}} \times \frac{2.64.6 - 88.2}{\sqrt{3}} \times \frac{176.4 \times \sqrt{3}}{\sqrt{3}} \times \frac{176.4 \times \sqrt{3}}{\sqrt{3}} \times \frac{176.4 \times \sqrt{3}}{\sqrt{3}} \times \frac{1000}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times \frac{h - 100}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times \frac{h - 100}{\sqrt{3}} \times \frac{100 \sqrt{3}}{\sqrt{3} - 1} \times \frac{1}{\sqrt{3}} \times \frac{100 \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3} + \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3} + \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3} + \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3} + \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3} + \sqrt{3}}{\sqrt{3} - 1} \times \frac{100 \sqrt{3}}{\sqrt{3}$		$\frac{1}{1000} \frac{\sqrt{3}}{2000} \frac{1}{88.2}$	
$\frac{1}{\sqrt{3}} = \frac{882\sqrt{3}}{882+\sqrt{3}y}$ $\sqrt{3}y + 88.2 = 88.2x3$ $\sqrt{3}y = 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4x\sqrt{3}}{3}$ $y = 58.8\sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$ $\frac{100\sqrt{3}}{3\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}(\sqrt{3}+1)}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$		$\lim_{t \to 0} 30 = \frac{1}{x+y}$	
$\frac{1}{\sqrt{3}} = \frac{882\sqrt{3}}{882+\sqrt{3}y}$ $\sqrt{3}y + 88.2 = 88.2x3$ $\sqrt{3}y = 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4x\sqrt{3}}{3}$ $y = 58.8\sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$ $\frac{100\sqrt{3}}{3\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}(\sqrt{3}+1)}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$		$\frac{1}{\sqrt{3}} = \frac{88.2}{88.2 + y}$	
$\sqrt{3} y + 88.2 = 88.2 x 3$ $\sqrt{3} y = 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4 x \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{100 \sqrt{3}}{3 - 1} = h$ $h = \frac{100 \sqrt{3}}{3 - 1} = \frac{100 (3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) m$ $x = h = 50 (3 + \sqrt{3}) m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$		$\frac{\sqrt{3}}{1}$ 88.2 $\sqrt{3}$	
$\sqrt{3}y = 264.6 - 88.2$ $y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4 \times \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{ m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100\sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3-1} (\sqrt{3}+1) = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$y = \frac{176.4}{\sqrt{3}}$ $y = \frac{176.4 \times \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{ m}$ Ans 27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{100 \sqrt{3}}{3 - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) \text{m}$ $x = h = 50 (3 + \sqrt{3}) \text{m}$ Ans 28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$y = \frac{176.4 X \sqrt{3}}{3}$ $y = 58.8 \sqrt{3} \text{m}$ Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{n}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{100 \sqrt{3} (\sqrt{3} + 1)}{3 - 1} = \frac{100 (3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) \text{m}$ $x = h = 50 (3 + \sqrt{3}) \text{m}$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$		$\sqrt{3}y = 264.6 - 88.2$	
Ans27 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100 \sqrt{3} (\sqrt{3}+1)}{3-1} = \frac{100 (3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$		$y = \frac{176.4}{\sqrt{3}}$	
Ans27 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100 \sqrt{3} (\sqrt{3}+1)}{3-1} = \frac{100 (3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$		$V = \frac{176.4 X \sqrt{3}}{1100 \text{Mpc}}$	
Ans27 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3-1} = \frac{100(3+\sqrt{3})}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3-1} = \frac{100(3+\sqrt{3})}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$	Ans27		
$\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$ $\frac{100\sqrt{3}}{\sqrt{3}-1} = h$ $h = \frac{100\sqrt{3}}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$		1 x x	
$\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{100 \sqrt{3}}{3 - 1} = \frac{100(3 + \sqrt{3})}{3 - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) m$ $x = h = 50 (3 + \sqrt{3}) m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{1000\sqrt{3} (\sqrt{3} + 1)}{3 - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3})m$ $x = h = 50 (3 + \sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h - 100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$		$\begin{pmatrix} \tan 30 - x \\ 1 & h-100 \end{pmatrix}$	
$100 \sqrt{3} = \sqrt{3} h - h$ $\frac{100 \sqrt{3}}{\sqrt{3} - 1} = h$ $h = \frac{100\sqrt{3}}{3 - 1} = \frac{100(3 + \sqrt{3})}{2} = 50 (3 + \sqrt{3}) m$ $x = h = 50 (3 + \sqrt{3}) m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h - 100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h - 100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$\frac{\frac{100\sqrt{3}}{\sqrt{3}-1}}{h} = h$ $h = \frac{\frac{100\sqrt{3}}{3-1}}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$			
$h = \frac{100\sqrt{3} (\sqrt{3}+1)}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$		$100 \sqrt{3} = \sqrt{3} h - h$	
$h = \frac{100\sqrt{3} (\sqrt{3}+1)}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$ $x = h = 50 (3+\sqrt{3})m$ Ans28 $\tan 45 = \frac{h}{x}$ $x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3}h - 100\sqrt{3}$ $100\sqrt{3} = \sqrt{3}h - h$		$\frac{100\sqrt{3}}{\sqrt{3}-1} = h$	
Ans28 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $\tan \frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $\tan 30 = \frac{h-100}{x}$ $\tan 30 = \frac{h-100}{x}$ $\tan 30 = \frac{h-100}{x}$ $\tan 30 = \frac{h-100}{x}$		$h = \frac{100\sqrt{3} (\sqrt{3}+1)}{100\sqrt{3}} = \frac{100(3+\sqrt{3})}{100} = 50 (3+\sqrt{3}) m$	
Ans28 $\tan 45 = \frac{h}{x}$ x = h $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$x = h$ $\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$	Ans28		
$\tan 30 = \frac{h-100}{x}$ $\frac{1}{\sqrt{3}} = \frac{h-100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$	7520	$\frac{101145 = \frac{1}{x}}{x}$	
$\frac{1}{\sqrt{3}} = \frac{h - 100}{h}$ $h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$h = \sqrt{3} h - 100 \sqrt{3}$ $100 \sqrt{3} = \sqrt{3} h - h$			
$100 \sqrt{3} = \sqrt{3} h - h$			
$1.100\sqrt{3}$			
$\frac{100 \text{ y/s}}{\sqrt{3}-1} = \text{h}$		$\frac{100\sqrt{3}}{\sqrt{3}-1} = h$	
$h = \frac{100\sqrt{3} (\sqrt{3}+1)}{3-1} = \frac{100(3+\sqrt{3})}{2} = 50 (3+\sqrt{3})m$		$h = \frac{100\sqrt{3} (\sqrt{3} + 1)}{100\sqrt{3} (\sqrt{3} + 1)} = \frac{100(3 + \sqrt{3})}{100} = 50 (3 + \sqrt{3}) m$	
$x = h = 50 (3+\sqrt{3})m$			
Ans29 $\tan \theta = \frac{h}{a}$	Ans29	$\begin{array}{c} A - 11 - 30 (3773)111 \\ 1200 - \frac{h}{2} \end{array}$	
$\tan (90-\Theta) = \frac{h}{b}$		h " n	
$\cot\Theta = \frac{n}{b}$			
$\tan \Theta = \frac{b}{h}$		$\tan \Theta = \frac{b}{h}$	
$=\frac{b}{b}=\frac{h}{a}$		$=\frac{b}{b}=\frac{h}{a}$	
$= \frac{b}{h} = \frac{h}{a}$ $= h^2 = ab$		$\begin{vmatrix} n & a \\ = h^2 = ab \end{vmatrix}$	
$H = \sqrt{ab}$			
Ans30 $\tan 60 = \frac{h}{x}$	Ans30		
$x\sqrt{3} = h$		$\int x\sqrt{3} = h^x$	
$\tan 30 = \frac{h}{150 - x} \qquad h$	1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\frac{1}{\sqrt{3}} = \frac{x \sqrt{3}}{150 - x}$ $\frac{60}{x}$ $\frac{30}{150 - x}$		$\begin{vmatrix} 150-x \\ 1 & x\sqrt{3} \end{vmatrix}$	
150-x=3x		$\frac{1}{\sqrt{3}} = \frac{x\sqrt{3}}{150 - x}$ 60 30 x 150-x	

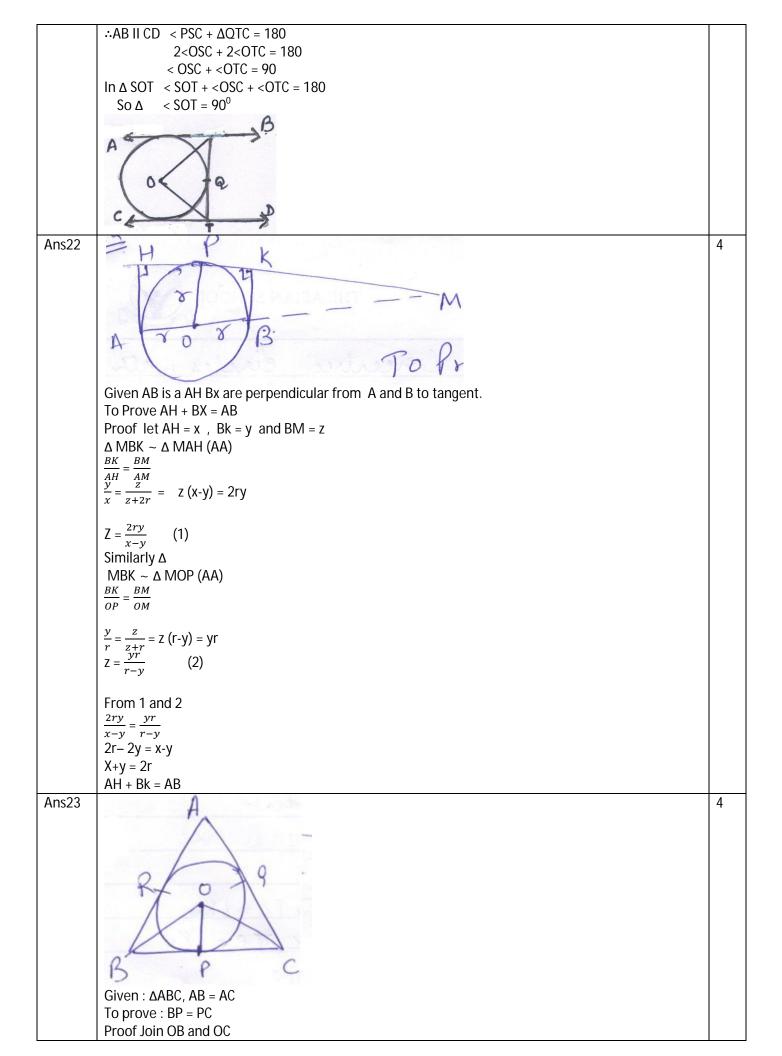
150=4x	
x = 37.5m	
$h = 37.5\sqrt{3}m$	


Test Paper Session 2017-18

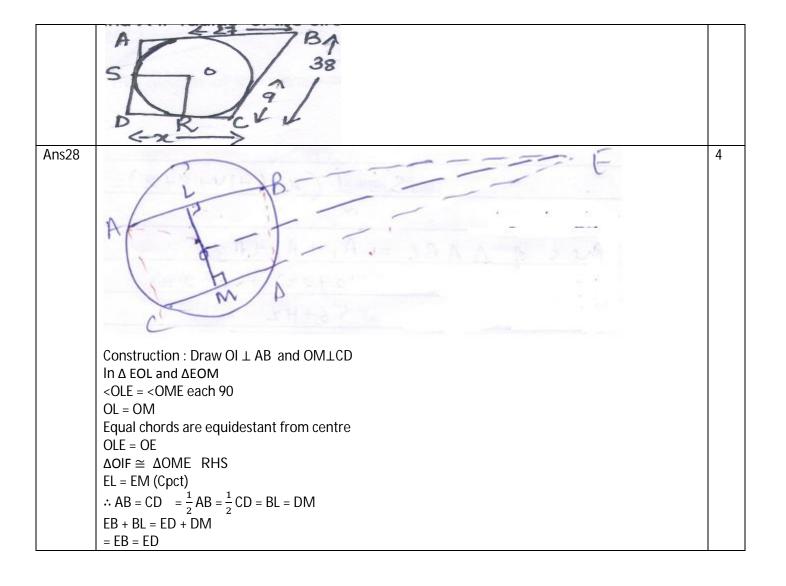
CLASS 10 SUBJECT Mathematics CHAPTER- 10 Circles

Ans1.		1
7.11011		
	100	
	1x 13101	
	36	
	$r = \sqrt{39^2 - 36^2} = \sqrt{75x3}$	
	r = 15cm.	
Ans2		1
	R	
	AOD	
	22 40	
	X X	
	AO = OP Tangents from	
	OP = OB External point <oap <opa="x" =="" let<="" td=""><td></td></oap>	
	Similarly < OPB = <obp= let<="" td="" y=""><td></td></obp=>	
	< A + < P + < B = 180	
	$$	
	2x + 2y = 180	
	x+y = 90 <apb= <math="">90^{\circ}</apb=>	
Ans3	A	1
	A. 249 A9 C	
	E SOO D	
	C - 6	
	BDC	
	BC = 6 cm, AB = 8 cm by Pythagoras theorem AC = 10 cm	
	area of $\triangle ABC = \frac{1}{2}AB \times BC = \frac{1}{2}8x6 = 24cm^2$	
	also area of $\triangle ABC = \frac{1}{2} \times BC \times r + \frac{1}{2} ACX + \frac{1}{2} ABX + $	
	$24 = \frac{1}{2} \Gamma \left[6 + 10 + 8 \right]$	
	48 = 24r	
	r = 2 cm	


Ans4		1
A1154	PID	'
	A	
	9	
	AD AO	
	AB = AC	
	PB = PR Tangents from external point	
	QR = QC	
	Perimeter of Δ APQ	
	= AP + PQ + AQ	
	= AP + PR + RQ + AQ	
	= AP + PB + QC + AQ	
	Perimeter of $\triangle APQ = AB + AC = 10 \text{ cm}$	
Ans5		2
		-
	1 X X Z	
	0 10	
	H /	
	Given: AB is a chord of bigger circle centre O.	
	To prove AP = PB	
	Join OA ,OB and OP	
	Proof : AB is ⊥ to OP as radius is ⊥ to tangent at point of contact	
	In ΔOAP and ΔOAB	
	OA = OB = radius of bigger circle	
	$<$ OPB = $<$ OPA each 90 $^{\circ}$	
	OP = OP common	
	$\triangle OPB \cong \triangle OPA RHS$	
	AP = PB (Cpct)	
Ans6	Al -1 b (oper)	2
AHSO		2
	107	
	[5.	
	Given Two tanget AP and AB, O is centre	
	To prove AP = AB	
	Proof : Δ OPA and ΔOBA	
	OP = OB = radius of circle	
	<pa <oba="" =="" at="" contact<="" is="" of="" perpendicular="" point="" radius="" tangent="" td="" to="" –=""><td></td></pa>	
	OA = OA common	
	$\Delta OPA \cong \Delta OBA RHS$ AP = AB (Cpct)	
Ans7	$<0 + $	2
	OQPR is quadrilateral so, 140+ x = 180	
	$[\because $	
	Tangent makes 90° with radius at point of contact]	
	x = 180-140 = 40	
	X = 100 170 = 70	
	R	
		1


Ans8.		2
Aliso.		
	_/ / O \ K \	
	18/18/1	
	2 D. 5	
	r = 3 cm , R = 5 cm	
	In \triangle OPL OL = 5 cm OP = 3 cm	
	$LP = \sqrt{OL^2 - OP^2} = 5^2 - 3^2 = \sqrt{16}$ $LP = 4$	
	Length of chord = 2x 4 = 8 cm.	
Ans9	Length of chord = 2x 4 = 6 cm.	2
AHST	A	-
	15	
	Let AB be the diameter of circle	
	< OAP = < OBQ = 90	
	Radius is ⊥ to tangent at point of contact.	
	<OAP + $<$ OBQ = 180	
	Which prove cointerior angles are supplementary → AP II BQ	
Ans10	Given AB is a chord	2
	AOC is a diameter	
	To Prove : < BAT = < ACB	
	Proof : AOC is diameter	
	\rightarrow < ABC = 90°	
	Let < BAT = 1, < BAC = 90- <1	
	∴ In Δ ABC	
	< ACB + < CAB + < CBA = 180	
	< ACB = < 1 = < BAT Hence prove.	
	(o) B	
	\uparrow	
Ans11		2
1		1

i .	6 Prove design	
	В	
	ALL COLORS OF THE STATE OF THE	
Ans14	Given: A parallelogram say ABCD. Let the parallelogram touch the circle at the point P,Q	3
	R, and S, As AP and AS are tangents to the circle drawn from an external point A.	
	DIRC	
	5	
	APB	
	AP = AS, BP = BQ	
	CR = CQ, $DR = DS$	
	adding all we get	
	(AP + BP) + (CR + DR) = AS + BQ + CQ + DS	
	= AS + DS + BQ + CQ	
	AB + CD = AD + BC	
	AB + AB = AD + AD	
	$\therefore CD = AB, BC = AD$	
	Opposite sides of Parallelogram	
	2AB = 2AD	
	AB = AD	
	ABCD is a rhumbus	
Ans15	ADCD 15 a THUTTIDUS	3
AHSTO	(M) 0 = 1 A, M901 = 2 A	3
	10 ten	
	1 cm	
	307	
	A 30T	
	A T In right Δ O AT,	
	A T In right Δ O AT,	
	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$	
	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$	
	A T In right Δ O AT,	
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{oT}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given:Two tangents PT and PT' To prove < TPT' = 2 <ott'< td=""><td>3</td></ott'<>	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given :Two tangents PT and PT' To prove < TPT' = 2 <ott' <otp="<math" proof="">4</ott'>	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{oT}$ $\frac{\sqrt{3}}{2} = \frac{AT}{o4}$ AT = $2\sqrt{3}$ cm Given :Two tangents PT and PT' To prove < TPT' = 2 <ott' 90="" <math="" <otp="<OT'P" =="" is="" proof="" radius="">\bot to tangent</ott'>	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given: Two tangents PT and PT' To prove < TPT' = $2<$ OTT' Proof < OTP = < OT'P = 90 Radius is \bot to tangent < TOT' + < TPT' = 180	3
Ans16	In right \triangle 0 AT, $\cos 30 = \frac{AT}{0T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given: Two tangents PT and PT' To prove < TPT' = $2<$ OTT' Proof < OTP = $<$ OT'P = 9 0 Radius is \bot to tangent < TOT' + < TPT' = 180 < TOT' = 180 - < TPT'	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{\sigma T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given :Two tangents PT and PT' To prove < TPT' = 2 <ott' <="" ot'p="<math" otp="<" proof="">90 Radius is \bot to tangent < TOT' + < TPT' = 180 < TOT' = 180 - < TPT' \triangle OTT', OT = OT' radius</ott'>	3
Ans16	In right Δ O AT, $\cos 30 = \frac{AT}{\sigma T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given :Two tangents PT and PT' To prove < TPT' = 2 <ott' <="" ot'p="<math" otp="<" proof="">90 Radius is \bot to tangent < TOT' + < TPT' = 180 < TOT' + < TPT' ΔOTT', OT = OT' radius < OTT' = < OT'T angle opposite to equal sides of Δ.</ott'>	3
Ans16	In right \triangle O AT, $\cos 30 = \frac{AT}{\sigma T}$ $\frac{\sqrt{3}}{2} = \frac{AT}{04}$ AT = $2\sqrt{3}$ cm Given :Two tangents PT and PT' To prove < TPT' = 2 <ott' <="" ot'p="<math" otp="<" proof="">90 Radius is \bot to tangent < TOT' + < TPT' = 180 < TOT' = 180 - < TPT' \triangle OTT', OT = OT' radius</ott'>	3


	TOT, OTT, OT, 100 (ACD)	
	< TOT' + < OTT' + < OTT' = 180 (ASP)	
	180- <tpt' +="" 2<ott'="180</td"><td></td></tpt'>	
	<tpt' 2<ott'="" =="" proved<="" td=""><td></td></tpt'>	
Ans17	PINUS CONTRACTOR AND PROPERTY	3
	>P	
	0. 9	
	9-14-0-14-9	
	Civen two tangents DA and DR are drawn	
	Given two tangents PA and PB are drawn. To prove : OP is perpendicular bisector of AB i.e. AQ = QB and AQO = <aqp= 90°<="" td=""><td></td></aqp=>	
	Proof:	
	<qpa <qpb<="" =="" td=""><td></td></qpa>	
	$\therefore \triangle OAP \cong \triangle OBP$	
	<qpa <qbp<="" =="" td=""><td></td></qpa>	
	∴ AP = BP	
	QP = QP common	
	$\Delta PQA \cong \Delta PQB AAS$	
	QA = QB → OP bsects AB	
	$\Delta OQA \cong \Delta OQB \text{ (SAS)}$	
	∴ OA = OB = radius	
	AQ = QB proved <oab <oba<="" =="" td=""><td></td></oab>	
	$\therefore OB = OA$	
	= <oqa <oqb<="" =="" td=""><td></td></oqa>	
	But <oqa +="" <oqb="180</td"><td></td></oqa>	
	2<0QA = 180	
	i.e. < OQA = 90	
	$<$ OQA = $<$ OQB = 90° hence proved.	
	OP is ⊥ bisector of AB.	
Ans18	Experience of the Control of the Con	3
	ρ	
	6	
	TOST TOST	
	7	
	Given PT and PT' are two tangents	
	To prove : <tpt' +="" <tot'="180</td"><td></td></tpt'>	
	Proof : OT' PT os a quadrilateral	
	$\langle OTP + \langle OT'P + \langle TPT' + \langle TT'O = 360 \rangle$	
	$<$ OTP = $<$ OT'P= 90° Radius is \perp to tangent.	
	90+90 + <tpt' +="" <tot'="360</td"><td></td></tpt'>	
	<tpt' +="" <tot'="180</td"><td></td></tpt'>	
Ans19	Given OP = 13 cm AB = 7 cm BP = 9cm	3
	To find radius of circle.	

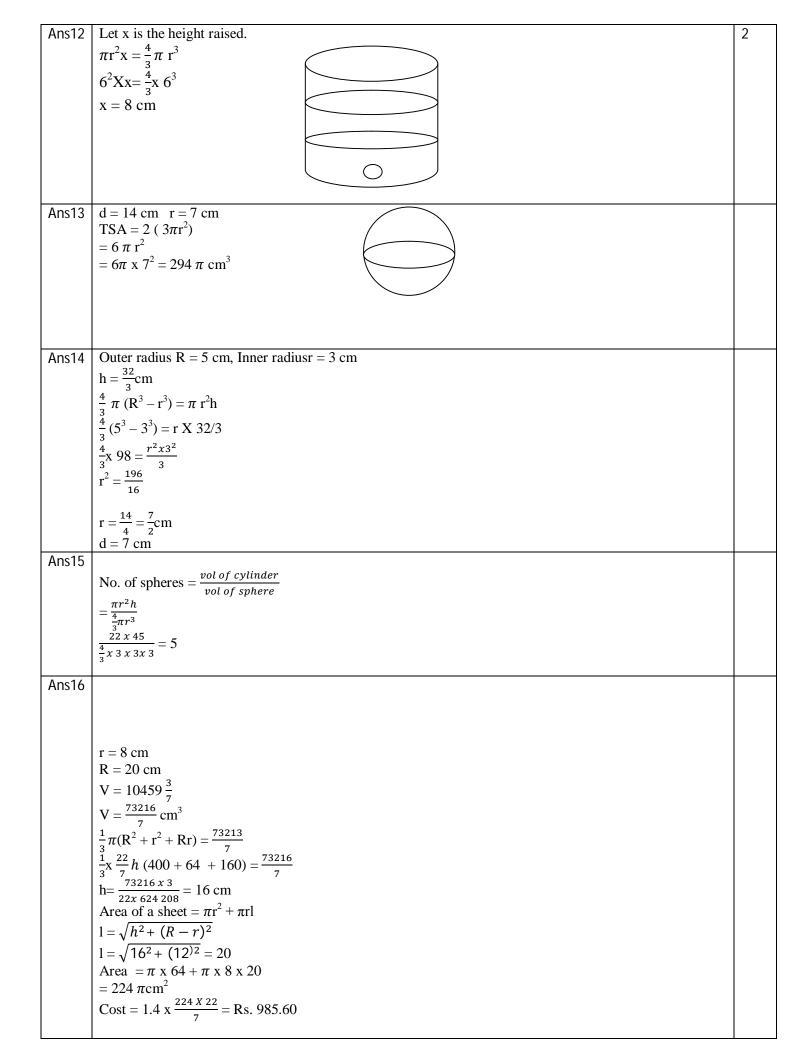
	In AODD and AOCD	-
	In ΔOBP and ΔOCP OB = OC = radius of circle	
	<pre><opb (radius="" <opc="90" =="" is="" pre="" tangent)<="" to="" ⊥=""></opb></pre>	
	OP = OP common $\Delta OPB \cong \Delta OPC \text{ RHS}$	
A O 4	PB = PC Hence proved	4
Ans24	Given: OP is equal to diameter of circle	4
	To prove ΔABP is an equilateral Δ	
	Proof Let <opa <opb="Q" =="" are="" equally="" inclined.<="" tangents="" td=""><td></td></opa>	
	Let radius of the circle be r	
	$< 1 = 90^{\circ}$ radius through point of contant is \perp to tangent.	
	In right \triangle OAP $\sin Q = \frac{OA}{OP} = \frac{r}{2r} = \frac{1}{2} = \sin 30^{\circ}$	
	Q = 30	
	<apb 20="60</td" ==""><td></td></apb>	
	Since PA = PB length of tangent from external point <2 = <3	
	$\Delta APB < 2 + 3 + \langle APB = 180 \rangle$	
	<2 + <2 + 60 = 180	
	$2 < 2 = 120^{\circ}$	
	$<2 = <3 = 60^{\circ}$	
	So all angles of \triangle APB are 60° \triangle APB is an equilateral \triangle .	
	NA .	
	100	
	\\B/	
Ans25		4
Aliszo	A (2 h	4
	A/30,0 B	
	V2 42	
	3/6	
	A	
	C	
	Given: CD is a at contact point C AOB to diamet or which meets tangents produced at D.	
	Chord AC makes <a 30°="" =="" ab<="" td="" with=""><td></td>	
	To prove : BD = BC	
	Proof : Δ OAC, OA = OC = r radii	
	< 1 = <a angle="" equal="" opposite="" sides<="" td="" to=""><td></td>	
	< 1 = < A angle opposite to equal sides $< 1 = 30^{\circ}$	
	< 1 = 30 $< BOC = < 2 = < 1 + < A = 30 + 30 = 60^{0}$	
	ΔOCB OB = OC radii	
	<3 = <4	
	$<3 + <4 + < COB = 180^{\circ}$	
	<3 + <3 + 60 = 180	
	$2 < 3 = 120^{\circ}$	
	$<3 = 60^{\circ} = <4$	
	$<6 + <4 = 180^{0}$ Linear pair	
	< 6 = 180 -<4	
	= 180 – 60 = 120	
	$<$ OCD = 90°	
	< 3 + <5 = 90	
	$<5 = 90 - <3 = 90 - 60 = 30^{\circ}$	
	< 5 = 90 - < 5 = 90 - 60 = 50 $\triangle BCD < 5 + < 6 + < D = 180^{\circ}$	
	120 + 30 + < D = 180	
	$2C = 30^{\circ}$ $2C = D = 30^{\circ}$ $2C = D = 30^{\circ}$ $2C = D = 30^{\circ}$ $2C = D = 30^{\circ}$ $2C = D = 30^{\circ}$	

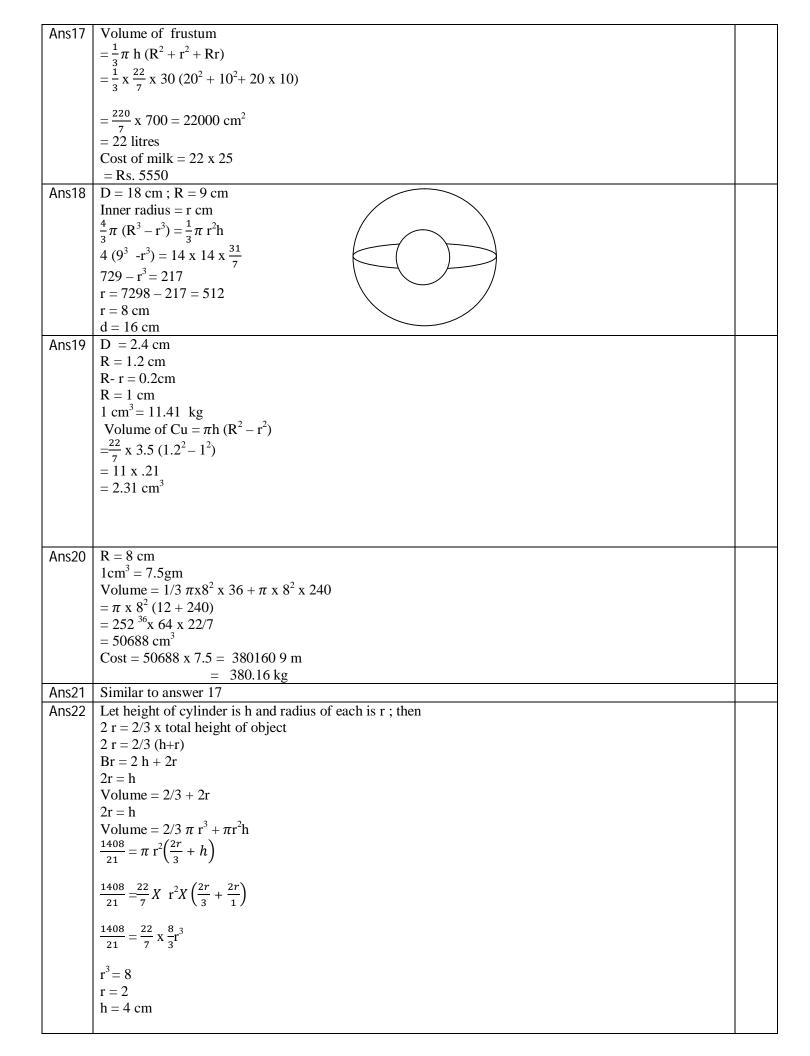
Ans26		4
AHSZU	O H 3 A 3 O H S LAW	4
	8	
	1 Original Property of the Control o	
	4	
	Car 6 - De 8 - B	
	Given CD = 6 cm, BD = 8 cm	
	radius 4 cm	
	Join OC OA and OB We know CD = CF = 6 cm	
	BD = BE = 8 cm	
	AF = AE = x cm	
	Δ OCB	
	area of $\triangle A1 = \frac{1}{2} X CB X OD = \frac{1}{2} x 14 x 4 = 28$	
	Δ OCA	
	area of $\triangle A2 = \frac{1}{2}x AC \times OE = \frac{1}{2}(6+x) \times 4$	
	= 12 + 12x	
	area of $\triangle A3 = \frac{1}{2} \times AB \times DE = \frac{1}{2} (8+x) \times 4 = 16 + 2 \times 4 = $	
	Semiperi meter of $\triangle ABC = \frac{1}{2} (AB + BC + AC)$	
	$S = \frac{1}{2}(x + 6 + 14 + 8 + x) = 14 + x$	
	area of ΔABC = A1 + A2 + A3	
	28 + 12+ 2x + 16+2x	
	56 + 4x	
	area of $\triangle ABC = \sqrt{S(S-9)(S-b)(S-c)}$	
	$=\sqrt{(14+x)(14+x-14)(14+x-x-6)(14-8)}$	
	$=\sqrt{(14+x)(x)(8)(6)}$	
	$\sqrt{(14+x)48x} = 56 + 4x$	
	Squaing $(14+x) 48x = 16 (14+x)^2$	
	3x = 14+x	
	2x = 14 x = 7	
	AC = 6 + x = 6 + 7 = 13 cm	
	AB = 8 + x = 8 + 7 = 15 cm	
Ans27	Radius of circle 10 cm	4
	BU = BT	
	CT = CR tangents from	
	DS = DR external points BT = BU = 27	
	CT = 38-27 = 11	
	CT = S0-27 = TT CT = CR = 11 cm	
	DR = x - 11	
	DR = SO = x-11 = radius of circle	
	x -11 = 10	
	x = 21	
	\therefore < D = 90° < 1 = <2 = 90 radius is \perp to tangent	
	DROS is a square	
	∴ DR = OS	

THE ASIAN SCHOOL, DEHRADUN Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 12 Area Related to Circles

	CLASS 10 SUBJECT Mathematics CHAPTER- 12 Area Related to Circles	
Ans1	$\pi r + 2r = 36$	1
	$r = \frac{36}{\pi + 2} = 7$	
Ans2	d = 14 cm $Area = 81$	1
	$a^2 = 81$	
	a = 9	
	P = 36 cm	
	$\pi r + 2r = 36$	
	r = 7	
	Area = $1/2\pi$ r ²	
	$= \frac{1}{2} \times \frac{22}{7} = 77 \text{ cm}^2$	
Ans3	$r = 21 \text{ cm}$ Ans= $21\pi \text{units}$	
Ans4	$2\pi r = 49$	
	$r = 2a/\pi$	
	ratio of areas = $\pi r^2/a^2$	
AncE	$=\pi(4/\pi^2)=4/\pi$	
Ans5	$2 \pi r = 100$ $r = \frac{100}{\pi} d = \frac{200}{\pi}$	
	Let side of square is a.	
	$a^2 + a^2 = \left(\frac{200}{\pi}\right)^2$	
	$\frac{1}{2} = \frac{1}{40000} \left(\frac{\pi}{\pi} \right)$	
	$2a^2 = \frac{40000}{\pi^2}$	
	2 20000	
	$a^2 = \frac{20000}{\pi^2}$	
	$C \longrightarrow D$	
	$a = \frac{100\sqrt{2}}{2}$	
Ans6	$r = 14 \text{ cm}; 1 \text{ min} = 6^{\circ}$	
71130	$15 \text{ min} = 90^{\circ}$	
	$Area = \frac{\theta}{360} \times \pi r^2$	
	90 14 14 10 2	
	$= \frac{90}{360} \pi \ 14 \times 14 = 49 \pi \ cm^2$	
Ans7	$\pi r + 2r = 66$	
7	$r = \frac{66}{\pi + 2}$	
	$\pi + 2$	
Ans8	a = side of square	
	r = radius	
	$a^2 = \pi r^2$	
	$\left \frac{a}{\pi}\right = \sqrt{\pi}$	
	Ratio of perimeter	
	$=rac{4a}{2\pi r}=rac{2}{\pi}\sqrt{\pi}$	
	$2\pi r$ π	
	$=\frac{2}{\sqrt{\pi}}$	
A == = 0	$-\sqrt{\pi}$	
Ans9	$1 \min = 6^{\circ}$	
	35 min = 210°	
	$Area = \frac{\theta}{360} \times \pi r^{1}$	
	$= \frac{210}{360} \times \pi \times 14 \times 14 = \frac{343}{3} \times \frac{22}{7} = \frac{1078}{3} \text{ cm}^2$	
Ans10	Similar to answer 9	
	,	


Ans11	$\pi r^2 = 2 \pi r$	
Alisti	r = 2	
Ans12	If we fold the semicircle then the slant height will be 14cm, let radius of cone be R, and height be h.	
	d = 28; r = 14	
	$\pi r = R(2\pi)$	
	R = 7 cm	
	$H^2 = 14^2 - 7^2 = 147$	
	$H = 7\sqrt{3}$ cm	
	Volume = $\pi r^2 h = \frac{22}{7} \times 49 \times 7\sqrt{3}$	
1 10	$= 1078 \sqrt{3} cm^3$	
Ans 13	$2\pi r = 22$	
	$r = \frac{11}{\pi} = 11 \times \frac{7}{22} = \frac{7}{2}$	
	Area of quadrant $=\frac{1}{4}\pi r^2$	
	$= \frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = \frac{77}{8} \text{ cm}$ $r = 12 \text{ cm} \qquad \theta = 120^{0}$	
Ans14	$r = 12 \text{ cm} \theta = 120^{\circ}$	
	Area of minor segment	
	$= \frac{120}{360} \times 3.14 \times 12^2 - \frac{1}{2} \times 12^2 \times \frac{3}{2}$	
	$= 12^{2} \left(\frac{3.14}{3} - \frac{1.73}{4} \right)^{2}$	
	$=144\left(\frac{12.56-5.19}{12}\right)$	
	7.27	
	$= 144 \text{ x} \frac{7.37}{12} = 88.44 \text{ cm}^2$	
Ans15	· · ·	
	Increase in area :	
	$= \frac{90}{360} \times \pi \ 23^2 - \frac{90}{360} \times \pi \ 16^2$	
	$=\frac{1}{4}\pi (529-256)$	
	$=2\frac{273}{4} \times \frac{22}{7} = \frac{6006}{28} \text{ cm}^2$	
Ans16	Let radius of circle is r and side of square is 12cm.	
	Area of remaining part :	
	Area of Δ – Area of circle	
	$\sqrt{3}$ side $\sqrt{2}$ 2 ($\sqrt{1}$ y 12 y m)	
	$\sqrt{\frac{3}{4}}$ side ² = 3 $(\frac{1}{2}X \ 12 \ X \ r)$	
	$\sqrt{\frac{3}{4}} \times 12^2 = 18r$	
	$ \begin{vmatrix} \sqrt{4} \\ r = 2\sqrt{3} \end{vmatrix} $	
	$\therefore \text{Area} = \sqrt{\frac{3}{4}} \times 12^2 - \pi (2\sqrt{3})^2$	
A 17	$= (36\sqrt{3} - 12\pi) \text{ cm}^2$	
Ans17	· ·	
	Area of shaded part : = side ² – 4sectors	
	$= 14^2 - 4x \frac{90}{36} \times \pi 7^2$	
	$= 14 - 4x \frac{3}{36} \times \pi$ = 196 - 49 π	
	$= 196 - 49\pi$ $= 196 - 154 = 42 \text{ cm}^2$	
Ans18		
	$r^2 = \frac{25}{2}$	
	-	
	$r = \frac{5}{\sqrt{2}}$.	
	Area of minor segment	


```
\frac{90}{360} \times 3: 14 \times \left(\frac{5}{\sqrt{2}}\right)^2 - 1/2 \times \left(\frac{5}{\sqrt{2}}\right) \times \sin 90
\frac{3.14 \times 25}{8} - \frac{25}{4}
= \frac{25}{4} (1.57 - 1)
= 6.25 \times .57 = 0.35625 \text{ cm}^2
Area of circle = \pi r^2
= \frac{22}{7} \times \left(\frac{5}{\sqrt{2}}\right)^2 = 3.14 \times 6.25
= 19.62 \text{ cm}^2
Area of major segment
= 19.62 - 0.36 = 19.20 \text{ cm}
Difference of segment = 19.26 – 0.36
= 18.9 \text{ cm}^2
```

THE ASIAN SCHOOL, DEHRADUN Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 13 Surface Area and Volume

	GLASS TO SOBJECT WARRENING CHAILTER-13 SULTACE ATEA and VOLUME	
Ans1	Radius of cylinder = $3x$	1
	Radius of cone = 4 x	
	Height of cylinder = 2y	
	Height of cone = 3y	
	Ratio of volume = 9:8	
Ans2	Volume of sphere = volume of wire	1
	$\frac{4\pi}{3}3^3 = \pi \times 1^2 \times h$	
	$h = 9x \ 4 = 36 \text{ cm}$	
Ans3	1:8	1
Ans4	$I = \sqrt{h^2 + (R - r)^2}$	1
71131	· · · · · · · · · · · · · · · · · · ·	'
	$I = \sqrt{6^2 + (20 - 12)^2} = 10cm$	
Ans5	$h = 15 \text{ cm}, r = 8 \text{ cm } 1 = \sqrt{n^2 + 1}$	2
	$1 = \sqrt{225 + 64} = 17 \text{ cm}$	
	$CSA = \pi rl = \pi 8 \times 17 = 136\pi cm^2$	
Ans6		2
	Let height = h and radius = r, then \bigcirc	
	$TSA = 2\pi r (2h) = 4\pi rh$	
Ans7	r = 5 cm	2
AIIS/	$\pi r^2 + \pi r l = 90 \pi$	2
	$5\pi (5+1) = 90\pi$	
	$h = \sqrt{l^2 - r^2}$	
	$h = \sqrt{169 - 25} = 12 \text{ cm}$	
Ans8		2
	No. of lead shots = $\frac{vol\ cuboid}{vol\ of\ lead\ shot}$	
	vol of lead shot	
	$=\frac{lx\ bx}{\frac{4}{3}x\frac{22}{7}x\frac{0.3}{2}x\frac{0.3}{2}} = 1260$	
	$\frac{1}{3}x\frac{2}{7}x\frac{3}{2}x\frac{3}{2}$	
Ans9	$\pi r^2 h = 567$	2
	$r^2h = 567$; h=7cm	
	h = 7 cm	
	$r^2 = 567/7$, implies	
	r = 9 cm	
Ans10	r = 2x ; h = 3x	2
	v = 1617	
	$\pi (2x)^2 (3x) = 1617$	
	2 1617 7 242	
	$x^{3} = \frac{1617}{12} x \frac{7}{222} = \frac{343}{8}$ $x = \frac{7}{2}$	
	$X = \frac{7}{2}$	
	so; $r = 7 \text{ cm}$ $h = \frac{21}{2} \text{ cm}$	
	$CSA = 2\pi r h = 2 x \frac{22}{7} x 7 x \frac{21}{2}$	
	$= 462 \text{ cm}^2$	
Ans11	Volume of cone = volume of sphere	2
	$\frac{1}{3}\pi^2 h = \frac{4}{3}\pi r^3$	
	$6x6x24 = 4 R^3$	
	R = 6 cm	
<u> </u>	II — O VIII	

THE ASIAN SCHOOL, DEHRADUN Test Paper Session 2017-18

CLASS 10 SUBJECT Mathematics CHAPTER- 15 Probability

	CLASS 10 SUBJECT Mathematics CHAPTER- 15 Probability	
Ans1	В	1
Ans2	<u>A</u>	1
Ans3	<u>A</u>	
Ans4	<u>D</u>	
Ans5	<u>B</u>	
Ans6	a) $\frac{13+3}{70} = \frac{16}{70} = \frac{4}{10}$	
	b) $\frac{52}{52-8} \frac{44}{44} - \frac{11}{11}$	
Anc7	5) 52 52 13 6 1	
Ans7	a) $\frac{3}{36} = \frac{1}{6}$	
	b) $\frac{36-6}{36} = \frac{30}{36} = \frac{5}{6}$	
Ans8	$ \frac{B}{B} $ a) $\frac{13+3}{52} = \frac{16}{52} = \frac{4}{13}$ b) $\frac{52-8}{52} = \frac{44}{52} = \frac{11}{13}$ a) $\frac{6}{36} = \frac{1}{6}$ b) $\frac{36-6}{36} = \frac{30}{36} = \frac{5}{6}$ $ \frac{52-(26+2)}{52} = \frac{24}{52} = \frac{6}{13}$ Total out comes = 52 - (13+3) = 36	
Ans9	52 52 13 Total out comes = 52 – (13+3) = 36	
Alist	a) D(black fore card) $\frac{3}{1}$	
	a) $P(\text{DIACK TOTE CALU}) = \frac{1}{36} = \frac{1}{12}$	
	a) P(black fore card) = $\frac{3}{36} = \frac{1}{12}$ b) P (red card) = $\frac{35-2}{36} = \frac{24}{36} = \frac{2}{3}$	
Ans10	Let the no. of blue marbles be x	
	∴ the no. of green marbles = 24-x	
	P (green) = $\frac{24-x}{24} = \frac{2}{3}$	
	x = 8	
Ans11	No. of white balls = x + 6	
	Total balls = 14+ 6 = 20	
	$P \text{ (white)} = \frac{x+b}{20} = \frac{1}{2}$	
	x = 4	
Ans12		
	Total balls = $x + 5$	
	P(blue) = (4 P(Red))	
	$\frac{x}{x+5} = 4\left(\frac{5}{x+5}\right)$	
	x = 20	
Ans13	a) x/18	
	b) No of red balls = x + 2	
	Total no. of balls = $18 + 2 = 20$	
	$\frac{x+2}{20} = \frac{9}{8} \times \frac{x}{18}$	
A 4.4	X = 8	
Ans14	Total no. of balls = $5 + 6 + 7 = 18$	
	a) 11/18 b) 7/18	
	c) 13/18	
Ans15	(HHH), (HTN), (HHT), (THH), (TNT), (TTH), (ITT)	
	a) P (2H) = 3/8	
	b) P (at least 2H) = 4/8 = ½	
	c) P (at most 24) = 7/8	
Ans16	Total out come = 52-3 = 49	
	a) 3/49	
	b) 3/49	
Ans17	c) 23/49 a) 10/49	
AHS17	a) 10/49 b) 3/49	
	U) UITI	

c)	1 – 3/49 = 46/49	
a)	8/19	
b)	6/9	
a)	5/17	
b)	8/17	
c)	13/17	
a)	4/52 = 1/13	
b)	26/52 = ½	
c)	52/8/ 52 = 44/52 = 11/13	
d)	2/51 = 1/26	
e)	1- (13+3/52) = 36/52 = 9/13	
a)	13/52 = ¼	
b)	12/52 = 3/13	
c)	1/52	
d)	16/52	
e)	16/52	
a)	20/100 = 1/5	
b)	50/100 = ½	
c)	10/100 = 1/10	
a)	5/17	
c)	13/17	
	a) b) a) b) c) a) b) c) d) e) f) a) b) c) d) e) f) a) b)	a) 8/19 b) 6/9 a) 5/17 b) 8/17 c) 13/17 a) 4/52 = 1/13 b) 26/52 = ½ c) 52/8/52 = 44/52 = 11/13 d) 2/51 = 1/26 e) 1-(13+3/52) = 36/52 = 9/13 a) 13/52 = ¼ b) 12/52 = 3/13 c) 1/52 d) 16/52 e) 16/52 f) 4/13 a) 20/100 = 1/5 b) 50/100 = ½ c) 10/100 = 1/10 a) 5/17 b) 8/17